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High performance cosmological simulations

Vlasov-Poisson equations
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» Need of HPC to explore non-linearities
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Distances and perturbations

Homogeneous FLRW metric

ds? = —c?dt? + a(t)?(dx? + dy? + dz?)
Perturbed FLRW metric
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Cone construction
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Integration of geodesics

Generic approach

» Direct integration of
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Full-sky light cones from FUR
Billions of AMR cells/observer
1 million photon/observer
Minimum number of approx

Simulation box Reconstructed light-cone
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Perturbed trajectories and stop condition

Different possibillities corresponding to the source type
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Results

Homogeneous and inhomogeneous angular diameter distances
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Defining Numerical Relativistic Cosmology
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Where do we want to go? Defining the ideal simulation

Let's imagine we have a yottascale (10%*) supercomputer: 1 billion times more
powerful than today with 1 billion times more memory than today
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Where do we want to go? Defining the ideal simulation

Let's imagine we have a yottascale (10%*) supercomputer: 1 billion times more
powerful than today with 1 billion times more memory than today

Wha

m Full GR: no background whatsoever

m Cosmological structure formation
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Let's imagine we have a yottascale (10%*) supercomputer: 1 billion times more
powerful than today with 1 billion times more memory than today

m Full GR: no background whatsoever

m Cosmological structure formation

What size range?

® Lnin: small galaxies?

® Lmax: the Observable Universe?
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® Lnin: small galaxies?

® Lmax: the Observable Universe?

What mass range?

B Min: mass of small galaxies?

® Max: mass of the Observable
Universe?

What time range?
B theginning: redshift of the CMB?

m tonq: current epoch?

Inhomogeneous Cosmologies - Vincent Reverdy - Torun, Poland - July 2017



Definition
@0000

Where do we want to go? Defining the ideal simulation

Let's imagine we have a yottascale (10%*) supercomputer: 1 billion times more
powerful than today with 1 billion times more memory than today

m Full GR: no background whatsoever

m Cosmological structure formation

What physics?

m Pure gravity
" Fas?)
® Lnin: small galaxies? A [ehedyenies
® Lmax: the Observable Universe? . .
m Baryonic physics?
What mass range? m Singularities and black holes?
m Neutrinos?

B Min: mass of small galaxies? o
m Magnetic fields?

m Pre-CMB physics?

m etc. ..

® Max: mass of the Observable
Universe?

What time range?

B theginning: redshift of the CMB?

m tonq: current epoch?
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m Compute the order of magnitude of the backreaction?
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m Compute the order of magnitude of the backreaction?

m Answer the backreaction conjecture?

m Have more realistic simulations?

m Have better virtual catalogs to prepare observational surveys?
m Better accuracy and precision in cosmological predictions?

m Numerical demonstration of classical cosmology?

m Understand the emergence of physics phenomena?
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m Compute the order of magnitude of the backreaction?

m Answer the backreaction conjecture?

m Have more realistic simulations?

m Have better virtual catalogs to prepare observational surveys?
m Better accuracy and precision in cosmological predictions?

m Numerical demonstration of classical cosmology?

m Understand the emergence of physics phenomena?

m Anything else?
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Why more power?

ditional answers: the philosophy of

m More stuff: bigger, longer, larger
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Why more power?

ditional answers: the philosophy of

More stuff: bigger, longer, larger

More resolution: in space, in time, in mass

u
u
m More simulations: exploration of parameter space, statistical accuracy
u

More physics: multiphysics code

Will this really answer our questions?

m More stuff = better evaluation of global quantities

Inhomogeneous Cosmologies - Vincent Reverdy - Torun, Poland - July 2017 33



Definition
[e]e] le]e}

Why more power?
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m More resolution: in space, in time, in mass
m More simulations: exploration of parameter space, statistical accuracy

m More physics: multiphysics code

Will this really answer our questions?

m More stuff = better evaluation of global quantities

m More resolution = less numerical errors
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m More stuff = better evaluation of global quantities
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Why more power?

ditional answers: the philosophy of

More stuff: bigger, longer, larger

u
m More resolution: in space, in time, in mass

m More simulations: exploration of parameter space, statistical accuracy
u

More physics: multiphysics code

Will this really answer our questions?

m More stuff = better evaluation of global quantities
m More resolution = less numerical errors

m More simulations = better accuracy on statistical quantities

More physics = more realistic (but less understanding)

Does not really bring any new knowledge...
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On realistic simulations

n multiphysics simulations
m Increase the number of degrees of freedom
m Increased degeneracy

m Add dimensions in a parameter space with local extrema
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On realistic simulations

On multiphysics simulations

m Increase the number of degrees of freedom

m Increased degeneracy

m Add dimensions in a parameter space with local extrema

Reality vs correctness

m Mimicking reality does not provide any guarantee of correctness
m Proving correctness is difficult, and even more with multiphysics simulations

m Multiphysics increase confusion instead of explainability
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On realistic simulations

On multiphysics simulations

m Increase the number of degrees of freedom

m Increased degeneracy
m Add dimensions in a parameter space with local extrema

Reality vs correctness

m Mimicking reality does not provide any guarantee of correctness
m Proving correctness is difficult, and even more with multiphysics simulations

m Multiphysics increase confusion instead of explainability

The role of simulations

m The goal of simulations is not to produce realistic results
m Producing realistic results is an optimization problem

m Neural networks can do it far better and way faster than most physical models
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On realistic simulations

On multiphysics simulations

m Increase the number of degrees of freedom

m Increased degeneracy
m Add dimensions in a parameter space with local extrema

Reality vs correctness

m Mimicking reality does not provide any guarantee of correctness
m Proving correctness is difficult, and even more with multiphysics simulations

m Multiphysics increase confusion instead of explainability

The role of simulations

m The goal of simulations is not to produce realistic results
m Producing realistic results is an optimization problem

m Neural networks can do it far better and way faster than most physical models

(Personal) conclusion

Simulations are not about the result, they are about the process
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The philosophy of mol

m More stuff

m More resolution

More simulations

More physics
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Less is more

The philosophy of more

m More stuff

m More resolution

m More simulations

More physics

The philosophy of less
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Less is more

The philosophy of more

m More stuff

m More resolution

m More simulations

More physics

The philosophy of less

m “Less” physics: start from more fundamental equations
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Less is more

The philosophy of more

m More stuff

m More resolution

m More simulations

More physics

The philosophy of less

m “Less” physics: start from more fundamental equations

m Less approximations
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Less is more

The philosophy of more

m More stuff

m More resolution
m More simulations

m More physics

The philosophy of less

m “Less” physics: start from more fundamental equations
m Less approximations

m Lower the number of degrees of freedom
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Less is more

The philosophy of more

m More stuff

m More resolution

m More simulations

More physics

The philosophy of less

“Less” physics: start from more fundamental equations
Less approximations

Lower the number of degrees of freedom

Improved correctness
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Less is more

The philosophy of more

More stuff

More resolution
More simulations

More physics

The philosophy of less

“Less” physics: start from more fundamental equations
Less approximations

Lower the number of degrees of freedom

Improved correctness

More generic
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Less is more

The philosophy of more

More stuff

More resolution
More simulations

More physics

The philosophy of less

“Less” physics: start from more fundamental equations
Less approximations

Lower the number of degrees of freedom

Improved correctness

More generic

Understanding emergence
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Current Limitations in Numerical Relativistic Cosmology
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What we do have

m The fundamental physics is known: G, = 8:—4GTMV
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m The fundamental physics is known: G, = 8:—4GTMV
® The numerical methods are known

m The algorithms are known
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What do we have? What do we need?

m The fundamental physics is known: G, = 8:—4GTMV
® The numerical methods are known
m The algorithms are known

m Parallelization techniques are known
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What do we have? What do we need?

m The fundamental physics is known: G, = 8:—4GTMV

The numerical methods are known
The algorithms are known

[
[
m Parallelization techniques are known
[

Implementation is a technical detail
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What do we have? What do we need?

What we do have

m The fundamental physics is known: G, = 8:—4GTMV

®m The numerical methods are known
m The algorithms are known
m Parallelization techniques are known

m Implementation is a technical detail

What we do need

= Therefore it is a problem of computational power

Inhomogeneous Cosmologies - Vincent Reverdy - Torun, Poland - July 2017



Limitations
0e00

Computational power

neous Cosmologies - Vincent Rever



Limitations
0e00

Computational power

Present and future

m We already have petascale supercomputers (10> FLOPS)

m Exascale supercomputers are coming (1018 FLOPS)
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Present and future

m We already have petascale supercomputers (10> FLOPS)

m Exascale supercomputers are coming (1018 FLOPS)

A lot of room at the bottom

m A lot of time in current simulation codes is spend doing nothing

m Lot of opportunity for optimizations at the bottom of computing

m Computer science, computer architecture, compiler, programming languages
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Computational power

Present and future

m We already have petascale supercomputers (10> FLOPS)

m Exascale supercomputers are coming (1018 FLOPS)

A lot of room at the bottom

m A lot of time in current simulation codes is spend doing nothing

m Lot of opportunity for optimizations at the bottom of computing

m Computer science, computer architecture, compiler, programming languages

Applications
High level libraries
Wirappers and bindings Python | R Java
Optimized libraries Interpreters (Python, R...) Virtual machines (JVM)

Compiled, native, low level languages (C, C++...)
Compilers, mostly written in C and C++ (GCC, LLVM...)
Machine layer, assembly instructions

Propagation of optimizations

Softwares are built as stacks. Low-level optimizations can be propagated back to the
higher levels while ensuring maximum performances and genericity.
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Example of optimization: bit level parallelism

Benchmark of standard algorithms on vector<bool> vs their bit_iterator specialization (logarithmic scale) [preliminary results]
Average time for 100 benchmarks with a vector size of 100,000,000 bits (speedups are provided at the top of each column)
17-2630QM @ 200GHz, Linux 3.13.0-74-generic, g++ 5.3.0, <03, -march=native, stdlibcs+ 20151204, credit: Vincent Reverdy

vector<bool>
bit_iterator<uint64_tx>

10781

1071

o0k

Average computing time per bit (in seconds)

10"
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Bit level parallelism (available in a next revision of C++)

Benchmark of standard algorithms on vector<bool> vs their bit_iterator specialization (linear scale) [preliminary results]
Average time for 100 benchmarks with a vector size of 100,000,000 bits (speedups are provided at the top of each column)
17-2630QM @ 200GHz, Linux 3.13.0-74-generic, g++ 5.3.0, <03, -march=native, stdlibc++ 20151204, credit: Vincent Reverdy

vector<bool>
0.8 bit_iterator<uint64_t*>

Average computing time per bit (in seconds)
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Challenges

Challenges in Numerical Relativistic Cosmology
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Upcoming challenge: data structures
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Upcoming challenge: data structures

Operation Approx. time Remark

L1 cache reference 0.5ns

One cycle on a 3 GHz processor lns

Branch mispredict 5ns

L2 cache reference Tns 14x L1 cache
Mutex lock or unlock 25ns

Main memory reference 100 ns 200x L1 cache
Send 1 KB over a 1 Gbps network 10 us

Read 1 MB sequentially from main memory 250 ps

Round trip within the same datacenter 500 ps

Read 1 MB sequentially from a SSD 1ms 4X memory
Disk seek 10ms 20x datacenter RT
Read 1 MB sequentially from disk 20ms 80X memory
Send packet California— Netherlands— California 150 ms
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Upcoming challenge: data structures

Operation Approx. time Remark

L1 cache reference 0.5ns

One cycle on a 3 GHz processor lns

Branch mispredict 5ns

L2 cache reference Tns 14x L1 cache
Mutex lock or unlock 25ns

Main memory reference 100 ns 200x L1 cache
Send 1 KB over a 1 Gbps network 10 us

Read 1 MB sequentially from main memory 250 ps

Round trip within the same datacenter 500 ps

Read 1 MB sequentially from a SSD 1ms 4X memory
Disk seek 10ms 20x datacenter RT
Read 1 MB sequentially from disk 20ms 80X memory
Send packet California— Netherlands— California 150 ms

Consequences

m Most of the time, pure computing time is not the problem anymore

m Most of the time, data transfer is the problem:
[disk] — [memory] — [cache]
[cache] +— [node memory] ++ [node memory] — [cache]

m Once everything is in cache, computations are fast

= Trees and graphs for AMR
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A history of challenges

Formalisms

Computational power

=

Algorithms

=

Parallelism [present]

=

Data structures [upcoming]
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Code complexity [future]
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Data structures [upcoming]
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Code complexity [future]
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Challenges in computational sciences

A history of challenges

Formalisms

Computational power

Algorithms

Parallelism [present]
Data structures [upcoming]
a

Code complexity [future]

A stack of challenges

Type theory and category theory [theoretical computer science]
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A history of challenges

Formalisms

Computational power

Algorithms

Parallelism [present]
Data structures [upcoming]
a

Code complexity [future]

A stack of challenges

Type theory and category theory [theoretical computer science]
Programming languages and compilers [computer science]
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A history of challenges

Formalisms

Computational power
Algorithms

Parallelism [present]

Data structures [upcoming]

@ Code complexity [future]

A stack of challenges

Type theory and category theory [theoretical computer science]
Programming languages and compilers [computer science]
Data organization [computer science, computer engineering]
Parallelization [computer science, computer engineering]
Numerical methods [applied mathematics]

@ Solvers [applied mathematics]

Physics equations [physics]
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Implementation and algorithms are technical details.

The computer scientist’s view

The physics is a technical detail.

Current approaches

m We tend to do work that should be done by computers

m We bend our physics to make it fit instead of bending languages and compilers

m Compilers can derive equations and do mathematical optimization

What is a programming language?
f
—
S T

S: a set of equations to solve
T: a number (sequence of 0 and 1) to serve as input of a Turing machine
f: the morphism computed by the compiler

Traditional approach: modifying S = but f can be modified too
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A type theory/category theory problem

Code complexity

m Parallelism, numerical methods, data structures and physics are all mixed together
m Combinatorial explosions of complexity

m Everything but a technical detail

m Boils down to a type theory/category theory problem

m Finding the right abstractions is mostly language independent
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The ideal simulation code

m Full GR on cosmological scales

m No metric background

m Should solve G, = 8:'_T—A‘(;Tw, for a given distribution of mass. ..and that's it

m To understand the emergence of cosmology from numerical relativity

m Regardless of backreaction effects

Challenges

m Computational power is a no-problem
m Data movement is a rising bottleneck

m Code complexity will come after
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m The main problem of computing is moving from parallelism to data structures

m There is a lot of room at the bottom of computing: low-level optimizations
m Code complexity boils down to a type theory problem: computer scientists needed

m For a well-designed code, physics should almost be a technical detail

On simplicity

m Doing Full GR cosmological simulations is aiming for less
® ...and less is more: more genericity, more correctness, more explainability

® ...to understand the emergence of cosmology from numerical relativity

Conclusion

“Simplicity is the final achievement. After one has played a vast quantity of notes and
more notes, it is simplicity that emerges as the crowning reward of art.”
Fryderyk Chopin
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for your attention

Any question?

For collaborations: vince.rev@gmail.com
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