

gdzie znaleźć ten plik pdf

http://adjani.astro.uni.torun.pl/~boud/monog041105.pdf

OCRA, SZE + XMM-LSS survey

- SZ Effect galaxy clusters' role in cosmology
- more data to try to explain the $\Omega_m = 1$ minority claim
- XMM-LSS large scale structure survey
- SZ, OCRA and dark energy
- Extended SZ Effect possibly up to 1 degree

basic cosmology questions: geometry

flat "spherical" hyperbolic multiply connected $egin{aligned} \Omega_m + \Omega_\Lambda &= 1 \ \Omega_m + \Omega_\Lambda > 1 \ \Omega_m + \Omega_\Lambda < 1 \ & \mathsf{any} \ \Omega_m, \Omega_\Lambda \end{aligned}$

cosmic web

structure on scales ${\sim}100~{ m Mpc}$

- bottom-up structure building from perturbations
- biggest objects at knots of cosmic web = clusters
- biggest clusters have only recently formed
- cluster statistics are sensitive probe to whole theory of structure formation

Sunyaev Zel'dovich Effect

OCRA (SZ geom : struct) : topo galform : dist : pop : infl : SNe Toruń Centre for Astronomy, UMK Rayleigh-Jeans part of spectrum:

$$\Delta T_{RJ} \approx -45 \frac{L_X}{10^{44} \text{erg/s}}^{1/2} \frac{T_e}{1 \text{keV}}^{3/4} \mu K$$
 (1)

 $OCRA \Rightarrow SZ$ detection of clusters

Cosmological constant: yes or no?

Vauclair et al. 2003, A&A 412, L37, astro-ph/0311381 \Rightarrow strongly favour $\Omega_m \approx 1$

XMM-LSS - large scale structure survey

http://vela.astro.ulg.ac.be/themes/spatial/xmm/LSS/index_e.html

- X-ray survey should find about 900 clusters z < 1
- $8^{\circ} \times 8^{\circ}$ solid angle
- 5 $\times 10^{10-15}$ erg cm⁻² s⁻¹, 0.5-2 keV
- $24 \times 24 \ 10 \ \text{ks} \ \text{XMM/EPIC}$ exposures; 20 arcmin offsets.

$2^{h}18^{m}00^{s}, -7^{\circ}00'00''$ (J2000)

- \bullet some of the clusters detected in X will have $z\gg 1$
- \bullet OCRA followup should find more high z clusters than XMM in the same field
- \bullet there should be $N\sim 300$ clusters $L_X>10^{44}~{\rm erg/s}$ in the field

(1) SZ maps of known clusters $L_X > 10^{45}$ erg/s (2) blind SZ survey, resolution 1 arcmin, sensitivity 100 μ K

dark energy from SZ/OCRA?

OCRA assumptions: $S_{\mbox{lim}}=0.30~{\rm mJy},~\theta{\rm FWHM}=1.1',$ $\Delta\Omega=140{\rm deg}^2$

Battye, Weller, 2003, Phys.Rev. D68 (2003) 083506, astro-ph/0305568

Ω_m , w_0 , w_1

Extended SZ Effect

- possibly up to 1 degree
- Myers, Shanks, Outram, Frith, Wolfendale (2004), MNRAS-L in press, astro-ph/0306180

mean WMAP ΔT in annuli around clusters

\Rightarrow OCRA may be an optimal instrument for measuring the gas falling into clusters at \sim 10-20 $h^{-1}{\rm Mpc}$ from the cluster centres

\rightarrow OCRA main points

Testy obserwacyjne topologii Wszechświata Boud Roukema Centrum Astronomii UMK

geometria: krzywizna + topologia

geometria: krzywizna + topologia

geometria: krzywizna + topologia

geometria: krzywizna + topologia

geometria: krzywizna + topologia

geometria: krzywizna + topologia

0 + - multi-connected

0 + - multi-connected — 25 -

geometria: krzywizna + topologia

 $r_-:$ biggest sphere inside FD $r_+:$ smallest sphere containing FD $2r_{inj}:$ smallest closed spatial geodesic 0 + - multi-connected

Geometry: Curvature + Topology

+ - multi-connected (Luminet & Roukema 1999: http://arXiv.org/abs/astro-ph/9901364)

Strategies - 3D

http://arXiv.org/abs/astro-ph/0010189

A. multiple topological images:
A.i 3D (grav collapsed objects):
A.i.1 local isometries - many "type I pairs" or "local pairs"
A.i.2 cosmic crystallography - many "type II pairs" or "generator pairs",
A.i.3 characteristics of individual objects

Strategies - 2D and non-multiple-imaging

A.ii 2D (microwave background, CMB):
A.ii.1 identified circles principle:
A.ii.2 patterns of spots
A.ii.3 perturbation statistics assumptions
B. other:
B.i cosmic strings
B.ii nested crystallography

AGN Catalogues

Marecki, Roukema, Bajtlik

AGN Catalogues

AGN Catalogues

AGN Catalogues

AGN: Conclusion

- \bullet AGN short lifetimes implies redshift filter to improve S/N
- application to large AGN catalogue compilation reveals apparent signals
- \bullet closer analysis \Rightarrow these are selection effects
- no signal found in compilation of radio-loud AGNs (RLAGNs)
- Marecki, Roukema, Bajtlik (in preparation)

The Identified Circles Principle

Discovery of principle: Cornish, Spergel & Starkman (1996)

http://arXiv.org/abs/astro-ph/9602039 CQG, 15, 2657 (1998)

The Identified Circles Principle

The Identified Circles Principle

The Poincaré Dodecahedral 3-Manifold

• FD =

positively curved dodecahedron
covering space is S³ (hypersphere)
120 copies of FD tile S³
Luminet et al. (2003) find this favoured by WMAP statistics

(2)

OCRA (SZ geom : struct) : topo galform : dist : pop : infl : SNe Toruń Centre for Astronomy, UMK

The Poincaré Dodecahedral 3-Manifold

Correlation statistic to detect best circle matches:

$$S \equiv \frac{\left\langle 2\left(\frac{\delta T}{T}\right)_{i}\left(\frac{\delta T}{T}\right)_{j}\right\rangle}{\left\langle \left(\frac{\delta T}{T}\right)_{i}^{2} + \left(\frac{\delta T}{T}\right)_{j}^{2} \right\rangle}$$

The Poincaré Dodecahedral 3-Manifold

0 + - multi-connected — 40 —

The Poincaré Dodecahedral 3-Manifold

0 + - multi-connected — 42 -

The Poincaré Dodecahedral 3-Manifold

0 + - multi-connected — 43 -

The Poincaré Dodecahedral 3-Manifold

0 + - multi-connected — 44 —

^{0 + -} multi-connected — 45 -

Dodecahedral Hypothesis: Conclusions

- \bullet best Poincaré dodecahedral solution has $11\pm1^\circ$ matched circles
- the six circle pairs independently have high correlations

Dodecahedral Hypothesis: Conclusions

i	l^{II} in $^\circ$	b^{II} in $^\circ$	$lpha$ in $^\circ$
1	252.4	64.7	9.8
2	50.6	50.8	10.7
3	143.8	37.8	10.7
4	207.5	9.5	10.7
5	271.0	2.7	11.8
6	332.8	25.0	10.7

Roukema, Lew, Cechowska, Marecki, Bajtlik, A&A in press (2004)

http://arXiv.org/abs/astro-ph/0402608

Quasars

Roukema B. F. 1996, Monthly Notices of the Royal Astronomical Society, 283, 1147 *On Determining the Topology of the Observable Universe via 3-D Quasar Positions*

Clusters of Galaxies Candidate

Roukema B. F., Edge A. C. (X-ray) 1997, Monthly Notices of the Royal Astronomical Society, 292, 105 *Constraining Cosmological Topology via Highly Luminous X-ray Clusters*

Clusters of Galaxies Candidate Roukema B. F., Edge A. C. (X-ray) 1997, Monthly Notices of the Royal Astronomical Society, 292, 105 *Constraining Cosmological Topology via Highly Luminous X-ray Clusters*

Roukema B. F., Bajtlik, S. (optical) 1999, Monthly Notices of the Royal Astronomical Society, 308, 309 *Transverse Galaxy Velocities from Multiple Topological Images*

Clusters of Galaxies Candidate

Roukema B. F. (microwave background) 2000a, Monthly Notices of the Royal Astronomical Society, 312, 712 COBE and Global Topology: An Example of the Application of the Circles Principle

Application: Constraints on Curvature

Roukema B. F., Luminet, J.–P. 1999, Astronomy & Astrophysics, 348, 8 *Constraining Curvature Parameters via Topology*

Cosmic Microwave Background (COBE)

Roukema B. F. 2000b, Classical & Quantum Gravity, 17, 3951 A Counterexample to Claimed COBE Constraints on Compact Toroidal Models

Radio-Loud Active Galactic Nuclei (RLAGNs) + Cosmic Microwave Background (WMAP)

work under progress at Toruń Centre for Astronomy, UMK

Radio-Loud Active Galactic Nuclei (RLAGNs) + Cosmic Microwave Background (WMAP)

work under progress at Toruń Centre for Astronomy, UMK

 Marcin Gawroński, Magdalena Kunert, Andrzej Marecki, Sebastian Soberski (RLAGNs)

Radio-Loud Active Galactic Nuclei (RLAGNs) + Cosmic Microwave Background (WMAP)

work under progress at Toruń Centre for Astronomy, UMK

- Marcin Gawroński, Magdalena Kunert, Andrzej Marecki, Sebastian Soberski (RLAGNs)
- Magdalena Cechowska, Bartosz Lew (WMAP)

Radio-Loud Active Galactic Nuclei (RLAGNs) + Cosmic Microwave Background (WMAP)

work under progress at Toruń Centre for Astronomy, UMK

- Marcin Gawroński, Magdalena Kunert, Andrzej Marecki, Sebastian Soberski (RLAGNs)
- Magdalena Cechowska, Bartosz Lew (WMAP)
- http://adjani.astro.uni.torun.pl/cosmo

Theory: Cosmic Topology vs Inflation

- Peaks in the Hartle-Hawking Wave Function from Sums over Topologies Anderson, Carlip, Ratcliffe, Surya, Tschantz, 2003 http://arXiv.org/abs/gr-qc/0310002
- some topologies are much more probable than others
- spatial metrics of constant (negative) curvature are favoured
- work incomplete, but hints at predictability

Fine-Tuning

- observable $\Omega_{\Lambda} > 0 \Rightarrow$ fine-tuning of inflation
- observable cosmic topology \Rightarrow fine-tuning of inflation

 both might be the result of the same fine-tuning of inflation, or else of some other mechanism (e.g. peak in Hartle-Hawking wave function from sums over topologies)

ArFus: Galaxy Formation Software for the Ordinary User

(printed transparencies)

0 + - multi-connected — 62 -

Distance calculations in cosmology

• light-travel distance:

$$d_{\text{light-travel}} = \int_{t}^{t_0} c \, \mathrm{d}t'$$
 (3)

proper distance = comoving distance =

$$\chi = \int_{t}^{t_0} \frac{c \, \mathrm{d}t'}{a(t')}$$

proper distance = comoving distance =

$$\chi = \int_{t}^{t_{0}} \frac{c \, \mathrm{d}t'}{a(t')}$$
$$= \frac{c}{H_{0}} \int_{1/(1+z)}^{1} \frac{\mathrm{d}a}{a\sqrt{\Omega_{\mathrm{m}}/a - \Omega_{\kappa} + \Omega_{\Lambda}a^{2}}} \qquad (4)$$

http://www.wikipedia.org/wiki/Comoving_coordinates

0 + - multi-connected — 64 -

(5)

proper motion distance = coordinate distance =

$$d_{\rm pm} = \begin{cases} R_C \, \sinh \frac{\chi}{R_C} \, k = -1 \\ \chi & k = 0 \\ R_C \, \sin \frac{\chi}{R_C} \, k = +1 \end{cases}$$

(5)

proper motion distance = coordinate distance =

$$d_{\rm pm} = \begin{cases} R_C \, \sinh \frac{\chi}{R_C} \, k = -1 \\ \chi & k = 0 \\ R_C \, \sin \frac{\chi}{R_C} \, k = +1 \end{cases}$$

$$d_{\rm L} = (1+z)d_{\rm pm} = (1+z)^2 d_{\rm a}$$
 (6)

0 + - multi-connected — 65 -

FLRW metric

$$ds^{2} = c^{2}dt^{2} - a^{2}(t) \left[d\chi^{2} + dd_{pm}^{2} (d\theta^{2} + \cos^{2}\theta d\phi^{2}) \right]$$
(7)

Non-radial spatial geodesics

What is the comoving distance between two objects at different celestial positions and different redshifts, for an arbitrary curvature 0 + - ?

(8)

Distances on the 2-sphere

$$egin{array}{rcl} x_i &=& R\cos\delta_i\coslpha_i \ y_i &=& R\cos\delta_i\sinlpha_i \ w_i &=& R\sin\delta_i \end{array}$$

Distances on the 2-sphere

$$x_{i} = R \cos \delta_{i} \cos \alpha_{i}$$

$$y_{i} = R \cos \delta_{i} \sin \alpha_{i}$$

$$v_{i} = R \sin \delta_{i}$$
(8)

$$\langle a_1, a_1 \rangle = x_1 x_2 + y_1 y_2 + w_1 w_2$$

(9)

$$\langle a_1, a_1 \rangle = R^2 \cos \theta_{12}. \tag{10}$$

$$\langle a_1, a_1 \rangle = R^2 \cos \theta_{12}.$$
 (10)

a distance in $\mathcal{S}^2 = \text{arc-length}$ in \mathcal{R}^3 :

$$\chi_{12} = R \ \theta_{12} = R \ \cos^{-1} \left[\langle a_1, a_2 \rangle / R^2 \right].$$
 (11)

(cf 16)

positive curvature

negative curvature

Distances on the 3-sphere (3-hyperboloid) $\Sigma(\chi_i) \equiv \begin{cases} R \sinh(\chi_i/R) & k \equiv -1 \\ \chi_i & k \equiv 0 \\ R \sin(\chi_i/R) & k \equiv +1 \end{cases}$ (12)

 $egin{aligned} x_i &= \Sigma(\chi_i)\cos\delta_i\coslpha_i\ y_i &= \Sigma(\chi_i)\cos\delta_i\sinlpha_i\ z_i &= \Sigma(\chi_i)\sin\delta_i\ w_i &= egin{cases} R\ \cosh(\chi_i/R)\ 0\ R\ \cos(\chi_i/R) \end{aligned}$

$$k = -1$$

 $k = 0$ (cf eq. (8)(13)
 $k = +1$

OCRA (SZ geom : struct) : topo galform : dist : pop : infl : SNe Toruń Centre for Astronomy, UMK metric on S^3 (or \mathcal{R}^3 or \mathcal{H}^3):

$$ds^{2} = \begin{cases} k (dx^{2} + dy^{2} + dz^{2}) + dw^{2} & k = \pm 1 \\ dx^{2} + dy^{2} + dz^{2} & k = 0. \end{cases}$$
(14)

inner product (cf 9):

$$\langle a_1, a_2 \rangle \equiv \begin{cases} k (x_1 x_2 + y_1 y_2 + z_1 z_2) + w_1 w_2 & k = \pm 1 \\ x_1 x_2 + y_1 y_2 + z_1 z_2 & k = 0. \end{cases}$$
(15)

OCRA (SZ geom : struct) : topo galform : dist : pop : infl : SNe Toruń Centre for Astronomy, UMK generalisation of eq. (11):

$$\chi_{12} = \begin{cases} R \cosh^{-1} \left[\langle a_1, a_2 \rangle / R^2 \right] & k = -1 \\ \sqrt{\langle a_1 - a_2, a_1 - a_2 \rangle} & k = 0 \\ R \cos^{-1} \left[\langle a_1, a_2 \rangle / R^2 \right] & k = +1. \end{cases}$$
(16)

a distance in
$$\mathcal{S}^3$$
 is an arc-length in \mathcal{R}^4

OCRA (SZ geom : struct) : topo galform : dist : pop : infl : SNe Toruń Centre for Astronomy, UMK generalisation of eq. (11):

$$\chi_{12} = \begin{cases} R \cosh^{-1} \left[\langle a_1, a_2 \rangle / R^2 \right] & k = -1 \\ \sqrt{\langle a_1 - a_2, a_1 - a_2 \rangle} & k = 0 \\ R \cos^{-1} \left[\langle a_1, a_2 \rangle / R^2 \right] & k = +1. \end{cases}$$
(16)

|a distance in \mathcal{S}^3 is an arc-length in \mathcal{R}^4 |

a distance in \mathcal{H}^3 is an arc-length in \mathcal{M}^4

http://arXiv.org/abs/astro-ph/0102099

Czy Wszechświat jest krzywizony jak sfery?

- How can we think of curvature?
- How can we measure curvature?
- Finding a standard ruler
- Using a standard ruler LSS
- 2dF Quasar redshift survey 2QZ

Płaska Ziemia?

Druga płaska Ziemia?

A Standard Ruler: LS Structure Bubbles

 $z0~\Lambda0~\Lambda$

0 + - multi-connected — 80 -

Distant quasars: flat WITH cosm constant

0 + - multi-connected — 81 -

Standard Ruler Constraints on Ω_Λ and Ω_m from the 2dF QSO z Survey – 2QZ-10K

Collaborators :

- Gary Mamon (IAP; ObsParis–Meudon)
- Stanislaw Bajtlik (CAMK)
- results from the lovino, Clowes & Shaver (1996) catalogue:

tangential: Roukema & Mamon (2000, A&A, 358, 395)

0 + - multi-connected — 82 -

3-D: Roukema & Mamon (2001, A&A, 366, 1)

 results from the 2dF Quasar z survey early release (2QZ-10K):

Roukema, Mamon & Bajtlik (2001, A&A submitted, arXiv:astro-ph/0106135)

Local Cosmological Geometry

- cosmological constant: Ω_{Λ}
- density parameter: Ω_{m}
- curvature (–,0 or +): $\mathbf{\Omega}_{\kappa} \equiv \mathbf{\Omega}_{\mathbf{m}} + \mathbf{\Omega}_{\Lambda} \mathbf{1}$
- ullet comoving "proper" distance: $\mathbf{d}(\mathbf{z}) = \mathbf{d}(\mathbf{\Omega}_{\mathbf{m}}, \mathbf{\Omega}_{\mathbf{\Lambda}}, \mathbf{z})$

A Good Standard Cosmological Ruler

- should be fixed in "physical" coordinates or in comoving coordinates
- should be on scale too large to evolve in a Hubble time
- \Rightarrow comoving ruler best
- \Rightarrow fine feature in $\mathbf{P}(\mathbf{k})$ or the 2-point spatial correlation function $\xi(\mathbf{r})$ of density perturbations

Observational data sets Iovino, Clowes & Shaver (1996): RM00, RM01

• N = 812 high-quality quasar candidates

2QZ-10K: RMB01

- 11000 quasars in initial "10K" release
 http://www.2dFquasar.org/ includes spectra!!
- 10K release: > 85% "spectroscopic" completeness
- N = 2378 of these fall in regions above 80% "coverage" completeness
- 6 fields \Rightarrow 6 independent measurements of $\xi({\bf r})$ for any given redshift interval

• three redshift intervals:

0.6 < z < 1.1, 1.1 < z < 1.6, 1.6 < z < 2.2

Analysis method

$\xi(\mathbf{r}) = (\mathbf{D}\mathbf{D} - \mathbf{2}\mathbf{D}\mathbf{R}/\mathbf{n} + \mathbf{R}\mathbf{R}/\mathbf{n}^2)/(\mathbf{R}\mathbf{R}/\mathbf{n}^2)$

- DD = number of Data-Data pairs in the i^{th} bin $r_1 + (i-1)\Delta r < r < r_1 + i\Delta r$
- ullet $\mathbf{DR}=$ number of Data-Random pairs in \mathbf{i}^{th} bin
- $\mathbf{RR} =$ number of Random-Random pairs in \mathbf{i}^{th} bin
- $\mathbf{n} = \mathbf{N}(\mathsf{Random points}) / \mathbf{N}(\mathsf{Data points})$

z-scrambling (Osmer 1981):

angular positions of random data sets = those of the observations

• redshifts of random data sets = those of the observations, but in a randomised order

 $\bullet \ \Rightarrow$ selection effects in z and angle are cancelled

• \Rightarrow conservative results – the real correlations might partly be cancelled along with selection effects

$0.6 < z < 1.1, \Omega_{ m m} = 0.3, \Omega_{\Lambda} = 0.7$

$1.1 < z < 1.6, \Omega_{\rm m} = 0.3, \Omega_{\Lambda} = 0.7$

$1.6 < z < 2.2, \Omega_{\rm m} = 0.3, \Omega_{\Lambda} = 0.7$

$0.6 < z < 1.1, \Omega_{ m m} = 1.0, \Omega_{\Lambda} = 0.0$

$1.1 < z < 1.6, \Omega_{\rm m} = 1.0, \Omega_{\Lambda} = 0.0$

$1.6 < z < 2.2, \Omega_{\rm m} = 1.0, \Omega_{\Lambda} = 0.0$

$\Omega_{\mathrm{m}}, \Omega_{\Lambda}$ plane

$\Omega_{\mathrm{m}}, \Omega_{\Lambda}$ plane

$\Omega_{\mathrm{m}}, \Omega_{\Lambda}$ plane

• a local maximum in $\xi(\mathbf{r})$ is present in all three redshift ranges of the 2QZ-10K in only one region of the $\Omega_{\mathrm{m}}, \Omega_{\Lambda}$ plane, its scale is: $2\mathbf{L} = \mathbf{244} \pm \mathbf{17h}^{-1}$ Mpc • a local maximum in $\xi(\mathbf{r})$ is present in all three redshift ranges of the 2QZ-10K in only one region of the $\Omega_{\mathrm{m}}, \Omega_{\Lambda}$ plane, its scale is: $2\mathbf{L} = \mathbf{244} \pm \mathbf{17h}^{-1}$ Mpc

• this region is: $\Omega_{
m m} = 0.25 \pm 0.10, \Omega_{\Lambda} = 0.65 \pm 0.25$ (68% confidence), $\Omega_{
m m} = 0.25 \pm 0.15, \Omega_{\Lambda} = 0.60 \pm 0.35$ (95% confidence)

• a local maximum in $\xi(\mathbf{r})$ is present in all three redshift ranges of the 2QZ-10K in only one region of the $\Omega_{\rm m}, \Omega_{\Lambda}$ plane, its scale is:

 $\mathbf{2L} = \mathbf{244} \pm \mathbf{17}\mathsf{h}^{-1}$ Mpc

• this region is:

 $\Omega_{
m m}=0.25\pm0.10, \Omega_{\Lambda}=0.65\pm0.25$ (68% confidence), $\Omega_{
m m}=0.25\pm0.15, \Omega_{\Lambda}=0.60{\pm}0.35$ (95% confidence)

• independently of the SNe Ia data, $\Omega_{\Lambda} = 0$ is rejected at 99.7% confidence

OCRA (SZ geom : struct) : topo galform : dist : pop : infl : SNe Toruń Centre for Astronomy, UMK
In simple words:

Using the large scale structure "bubbles" traced by galaxies and quasars as a standard ruler, distant structures match nearby structures best if the Universe is approximately flat with about 70% of matter-energy density in a cosmological constant.

0 + - multi-connected — 101 -

OCRA (SZ geom : struct) : topo galform : dist : pop : infl : SNe Toruń Centre for Astronomy, UMK

194 SNe — Roy Choudhury & Padmanabhan (2003)

http://arxiv.org/abs/astro-ph/0311622

OCRA (SZ geom : struct) : topo galform : dist : pop : infl : SNe Toruń Centre for Astronomy, UMK

quintessence parameters: w_0, w_1

