ENS DE LYON

. ‘__._-;J'.t'A" .:_ ‘ g v ' .:.. ;
Background image éredit: Andrew Pontzen and Fabio Governato

b



Introduction: Averaging and foliations

| — Geometrical setting and fluid content

Il — Averaging the 3+1 Einstein scalar equations

lll — Toward a more fluid-intrinsic approach



INTRODUCTION: AVERAGING AND FOLIATIONS

Fluid-orthogonal foliation (irrotational flow)

i

Arbitrary spatial foliations ?
Generalize the system of averaged scalar Einstein equations
— allows for other choices of spatial sections and a more general fluid content

Buchert, T.: On average properties of inhomogeneous fluids in general relativity: dust cosmologies,
Gen. Rel. Grav. 32, 105 (2000)

Buchert, T.: On average properties of inhomogeneous fluids in general relativity: perfect fluid cosmologies,
Gen. Rel. Grav. 33, 1381 (2001)



INTRODUCTION: AVERAGING AND FOLIATIONS

Several proposals have already been suggested:

Kasai, M., Asada, H., Futamase, T.: Toward a no-go theorem for an accelerating universe through a nonlinear backreaction, Progr. Theor.
Phys. 115, 827 (2006); Tanaka, H., Futamase, T.: A phantom does not result from a backreaction, Progr. Theor. Phys. 117, 183 (2007)

Larena, J.: Spatially averaged cosmology in an arbitrary coordinate system, Phys. Rev. D 79, 084006 (2009)

Brown, I A., Behrend, J., Malik, K.A.: Gauges and cosmological backreaction, J. Cosmol. Astropart. Phys., JCAP0911:027 (2009)

Gasperini, M., Marozzi, G., Veneriano, G.: Gauge invariant averages for the cosmological badkreaction, J. Cosmol. Astropart. Phys.,
JCAP0903:011 (2009); Gasperini, M., Marozz, G., Veneziano, G.: A covariant and gauge invariant formulation of the cosmological
“backreaction”, J. Cosmol. Astropart. Phys., JCAP1002:009 (2010)

Riésinen, S.: Light propagation in statistically homogeneous and isotropic universes with general matter content, J. Cosmol. Astropart.
Phys., JCAP1003:018 (2010)

Beltran Jiménez, J., de la Cruz-Dombriz, A., Dunsby, P.K.S., SéezGoémez, D.: Backreaction mechanism in multifluid and extended
cosmologies, J. Cosmol. Astropart. Phys., JCAP1405:031 (2014)

Smirnov, J.: Gauge-invariant average of Einstein equations for finite volumes, farXiv:1410.6480] (2014)
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For regional domains, domain propagation

is crucial to the dynamics. DY)

It should be Lagrangian.

D (9



Geometrical setting and fluid content
Lapse and Shift

Globally hyperbolic structure / / )
Choice of a foliation <> Choice of the normal vector field n, |y /f/
irrotational (Frobenius theorem)

(nfn, = —1)

Adapted coordinates set (¢, x'):
time is constant on each hypersurface and labels them: X(¢); arbitrary spatial coordinates x'

— in these coordinates: nt = % (1, _N’f') , n, =—N(1,0)
lapse (set by shift (can be set through
foliation choice and the propagation of the
time normalization) spatial coordinates)

Conventions: ec=1
* metric signature (—,+,+,1)
 Greek letters for space-time indices (0 to 3), Latin letters for spatial indices (1 to 3)




| - GEOMETRICAL SETTING AND FLUID CONTENT 6

Fluid content — Tilt

Universe filled with a single fluid, characterized by its velocity field u, rest-mass density p
and general energy-momentum tensor

Ty = €uyuy, +2q,u,) +pby, + 7,

(traceless)

energy heat isotropic : _
densit ressure anisotropic
y vector P oressure

(b,uu = Guv + upuu)

Decomposition of u with respect to the foliation:

u=7y(n+v)

with n*v, = 0 (tilt vector)

and v = —n’“’uﬂ = (tilt factor or Lorentz factor)

\/1 — vHhY,




Averaging the 3+1 Einstein scalar equations

VDE/D\/mdgiﬂ

Z(t) D(t)
V)p = /1&15:8 )\ h(t,x" d3 /
Vo
Vo (t))l/ 3
n(®) = ( 1dap 1 |
Vo, > —2 = < — NK + (Nv') >
ap dt 3 /7 1K D
+ fluid-comoving domain \
trace of the
extrinsic curvature spatial
covariant
derivative

—>» commutation rule:

9o = (550), = (=¥ (500, @ (9 4 (7)) ),




Il — AVERAGING THE 3+1 EINSTEIN SCALAR EQUATIONS 8

3+1 Einstein equations (scalar part):

3| . K=N[R+K*—4nrG(BE—-S)—3A] —N" +NK|,

|2
f /R [X Eulerian

hypersurfaces intrinsic extrinsic Eulerian oressure (x3)
curvature scalar curvature energy density
. . 1 dg(lp 2 2 1
— averaging. 3———5 = —4nG(N*(e+3p)), + (N ), A+ Qp+Pp+ -Tp;
ap dt 2

1 dap\” ) ) 1, 1 1
3(%&) 87rG<N E>D—|—<N >DA—§<N R)D—EQD_gTD

Backreaction terms appear:

2

< — NK + (;\-’":"':} f_>

| b

kinematical:Qp = <N2 (J'C2 - ’]C?‘?j}cij)>’p - D

: . _ [l ﬂ AT 4y 2 i AT, 00 AN ATt N2,
dynamical: P, = <NN LK >P+<((m i) + 1 (o)) - 2NK (V') , — N2'K ,>P

tilt: 7o = — 167G (N2 ((v? — D)(e + p) + 2vv%qy + v0P1a05) ).
\ / LAV D

Assuming usual energy conditions and negligible heat vector contribution, 7p < 0.

+ integrability condition and averaged energy conservation equation



Il - AVERAGING THE 3+1 EINSTEIN SCALAR EQUATIONS

Recalls published proposals,
but here domain propagation is Lagrangian.

Domain propagation matters
for a regional domain D = X
different system considered!

Available proposals: regional domains
propagate along n (or 0 ) :

1) foliation- or coordinate-dependent considered space-time tube

2) no preservation over time of particle content / rest-mass

No such issues for Lagrangian domains (propagation along u);
only solution for fluid content preservation

— some formal differences in the equations, important difference in interpretation

More intrinsic to the fluid.



Toward a more fluid-intrinsic approach

The previous equations featured geometric, Eulerian quantities
(e.g. extrinsic and intrinsic hypersurface curvatures)

— one may use fluid rest-frame kinematic quantities instead:

1
/ v
acceleration expansion  ghear vorticity

scalar

E.g. for the commutation rule:

10
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Il — TOWARD A MORE FLUID-INTRINSIC APPROACH

1 d 2 N2 N2 1 / N2 1
[+ %) - (), o0 (), 55, -
ap dt ¥2 /b Y2 /p 2\ A2 p 2

3 d2 N2 N?2
D D

with new kinematic and dynamical backreactions:

2 N \? N \?2 N2 | N2

op —{<(—(_~>)> —<—(~.)> ]-2( 2g2> +2< 2w2> +
_"1\'?-2 ) 1 _'WT
9 D dt \ ~ D

Clearer dependence in the physical variables of the fluid...

T
Pp

but still (— foliation dependence)

— Modifying the formalism to reduce this dependence in the tilting of the hypersurfaces ?

... To be continued!
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Summary

— importance of a Lagrangian averaging domain

— a system of equations expressing the average evolution of a Lagrangian domain valid
for a general fluid, and in any foliation

— several possible formulations with different focusses (more or less intrinsic to the fluid)
and levels of explicit dependence in the foliation behaviour

— the quantitative results will still depend on the (free) foliation choice in any case:

in concrete applications, a particular choice of hypersurfaces has to be made, based on
physical relevance:

— fluid-orthogonal (for an irrotational fluid) ? | .
— constant rest-mass/energy density ? // T

— constant curvature ?
— statistical homogeneity ? / T

— synchronized fluid elements ?

12



THANK YOU FOR YOUR ATTENTION!
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