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Fluid-orthogonal foliation (irrotational flow)

Arbitrary spatial foliations ?
Generalize the system of averaged scalar Einstein equations
→ allows for other choices of spatial sections and a more general fluid content
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Several proposals have already been suggested:

For regional domains, domain propagation
is crucial to the dynamics.

It should be Lagrangian.
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Globally hyperbolic structure

Choice of a foliation  ↔  Choice of the normal vector field n,
irrotational  (Frobenius theorem)

Adapted coordinates set (t, xi):
time is constant on each hypersurface and labels them: Σ(t); arbitrary spatial coordinates xi

→ in these coordinates:

Geometrical setting and fluid content

lapse (set by 
foliation choice and 
time normalization)

shift (can be set through 
the propagation of the 
spatial coordinates)
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Conventions: ● c = 1
● metric signature  (–,+,+,+)
● Greek letters for space-time indices (0 to 3), Latin letters for spatial indices (1 to 3)

Lapse and Shift



6I – GEOMETRICAL SETTING AND FLUID CONTENT

Universe filled with a single fluid, characterized by its velocity field u, rest-mass density ρ 
and general energy-momentum tensor

energy 
density

heat 
vector

isotropic 
pressure

(traceless) 
anisotropic 
pressure

(  )

with (tilt vector)

and    (tilt factor or Lorentz factor)

γ n

S(t)γ v

u
Decomposition of u with respect to the foliation:

Fluid content  —  Tilt
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Averaging the 3+1 Einstein scalar equations

(t)S(t)

n

+ fluid-comoving domain
trace of the 

extrinsic curvature spatial 
covariant 
derivative

commutation rule:
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3+1 Einstein equations (scalar part):

hypersurfaces intrinsic 
curvature scalar

extrinsic 
curvature

Eulerian 
energy density

Eulerian 
pressure (x3)

       Backreaction terms appear:

Assuming usual energy conditions and negligible heat vector contribution,            .

+ integrability condition and averaged energy conservation equation

kinematical:

tilt:

dynamical:

→ averaging:
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nRecalls published proposals,
but here domain propagation is Lagrangian.

Domain propagation matters
for a regional domain            :
different system considered!

Available proposals: regional domains
propagate along n (or ∂

t 
) :

1) foliation- or coordinate-dependent considered space-time tube

2) no preservation over time of particle content / rest-mass

No such issues for Lagrangian domains (propagation along u);
only solution for fluid content preservation

→ some formal differences in the equations, important difference in interpretation

More intrinsic to the fluid.
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Toward a more fluid-intrinsic approach

The previous equations featured geometric, Eulerian quantities
(e.g. extrinsic and intrinsic hypersurface curvatures)

→ one may use fluid rest-frame kinematic quantities instead:

E.g. for the commutation rule:

expansion 
scalar

shearacceleration vorticity



11III – TOWARD A MORE FLUID-INTRINSIC APPROACH

Clearer dependence in the physical variables of the fluid...

but still several contributions from the tilt (→ foliation dependence)

→ Modifying the formalism to reduce this dependence in the tilting of the hypersurfaces ?

… To be continued!

with new kinematic and dynamical backreactions:
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Summary

→ importance of a Lagrangian averaging domain

→ a system of equations expressing the average evolution of a Lagrangian domain valid 
for a general fluid, and in any foliation

→ several possible formulations with different focusses (more or less intrinsic to the fluid) 
and levels of explicit dependence in the foliation behaviour

→ the quantitative results will still depend on the (free) foliation choice in any case:

in concrete applications, a particular choice of hypersurfaces has to be made, based on 
physical relevance:

– fluid-orthogonal (for an irrotational fluid) ?

– constant rest-mass/energy density ?

– constant curvature ?

– statistical homogeneity ?

– synchronized fluid elements ?

– ...

S(t)

n
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THANK YOU FOR YOUR ATTENTION!
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