Utilizing cosmological post-Newtonian approximation for the PPN formalism

Masaaki Morita (Okinawa Natl Coll Tech)

in colaboration with Hirotaka Takahashi (Nagaoka Univ Tech)

1. How to accelerate the cosmic expansion?

Since the end of the 20th century, when the observations of type Ia SNe were carried out, one of the most important unsolved problems in cosmology is:

What is the cause of the acceleration of the cosmic expansion

Theoretically possible candidates for the solution:

- Exotic matter or scalar field

 quintessence, phantom, k-essence, DBI, Chaplygin gas, condensate, …
- Gravity modification
 - scalar-tensor theories, f(R) gravity, Horndeski, massive gravity, Proca, …
- Inhomogeneity
 - backreaction, void, ...

2. Post-Newtonian parameter(s)

- Defined in Parametrized Post-Newtonian (PPN) formalism
- Derived from weak-field approximation in generalized gravity theories
- Substitution States States

$$\gamma$$
, β , α_1 , α_2 , α_3 ,...

$$ds^{2} = -(1+2\Phi) dt^{2} + a(t)^{2}(1+2\Psi) \delta_{ij} dx^{i} dx^{j}$$

$$\gamma := -\Psi/\Phi$$

• Appears in the lowest order
•
$$\gamma = 1$$
 in Einstein's GR

Experiment by Cassini
$$\gamma - 1 = (2.1 \pm 2.3) \times 10^{-5}$$
 (Bertotti et al 2003)

In modified gravity for small effective mass *M* of a scalar field

$$\gamma \approx 1/2$$
 (Chiba 2003; Olmo 2005;
Chiba, Smith, Erickcek 2007; etc)

Design the theory in such a way that *M* is small at the cosmological scales, and *M* becomes large at the local scales

γ approaches unity at the local scales (Capozziello & Tsujikawa 2008)

Inhomogeneous Cosmologies IV, Torun

Examples of chameleon f(R) models

$$f(R) = R - \lambda R_{c} \frac{(R/R_{c})^{2n}}{(R/R_{c})^{2n} + 1}$$
 (Hu & Sawicki 2007)
$$f(R) = R - \lambda R_{c} \left[1 - \left(1 + \frac{R^{2}}{R_{c}^{2}} \right)^{-n} \right]$$
 (Starobinsky 2007)
$$f(R) = R - \lambda R_{c} \left(1 - e^{-R/R_{c}} \right) \qquad \left(R_{c} \sim H_{0}^{2} \right)$$

$$f(R) = R - \xi(R), \quad \xi(0) = 0$$

$$\xi(R \gg R_{c}) \rightarrow \text{const}$$

3. Cosmological post-Newtonian approximation

(Futamase 1988, 1996; Shibata & Asada 1995; Takada & Futamase 1998, 1999)

Two small parameters $\epsilon := \frac{V_{pec}}{c}$, $\kappa := \frac{al}{l_{H}}$

At the local scales

$$\kappa^2 \ll \varepsilon^2 \ll 1$$

e.g. the galactic scale

$$\epsilon \sim 10^{-3}$$
, $\kappa \sim 10^{-5}$

$$\frac{1}{a^2}\nabla^2\Phi = O(H^2 \epsilon^2 / \kappa^2) = O(H^2 \cdot 10^4)$$

Amplitude of density perturbations

<u>It can be applied even if curvature and density</u> is large compared to the background

Metric

$$ds^{2} = -(1+2\Phi)dt^{2} + a(t)^{2}(1+2\Psi)\delta_{ij}dx^{i}dx^{j}$$

$$\underline{Curvature} \qquad R \approx R_{\mathrm{H}} + \mathcal{R}$$

$$R_{\mathrm{H}} := 6\left(2H^{2} + \partial_{t}H\right) \quad << \mathcal{R} := -\frac{2}{a^{2}}\nabla^{2}\left(\Phi + 2\Psi\right)$$

<u>Cf</u> In conventional approaches, Taylor expansion has been used for f(R) gravity: $f(R) \approx f(R_0) + f'(R_0)R_1$ for $R = R_0 + R_1$ $R_0 \gg R_1$

4. Demonstration in
$$f(R)$$
 gravity

Action:
$$S = \frac{1}{16\pi G} \int f(R) \sqrt{-g} d^4 x + S_{\rm m}$$

Field equations:

$$F(R)R_{\mu\nu} - \frac{1}{2}f(R)g_{\mu\nu} - F(R)_{;\mu\nu} + g_{\mu\nu}F(R)_{;\alpha}^{;\alpha} = 8\pi G T_{\mu\nu}^{(m)}$$
$$F(R) := f'(R)$$

In the case of Einstein's general relativity with Λ $f(R) = R - 2\Lambda$, F(R) = 1

In the case of
$$f(R)$$
 gravity

 $f(R) = R - \xi(R)$, $F(R) = 1 - \xi'(R)$

The field equations

$$\frac{F}{a^2} \nabla^2 \left(\Phi - \Psi \right) + \frac{1}{a^2} \delta^{ij} F_{,i} \left(\Phi - \Psi \right)_{,j} = 8\pi G\rho ,$$

$$\frac{F}{a^2} \left(\Phi + \Psi \right)_{,ij} + \frac{1}{a^2} \left(F_{,ij} - F_{,i} \Psi_{,j} - F_{,j} \Psi_{,i} \right) = 0 ,$$

(ignored the terms including the time derivative)

For the spatial derivatives of F

$$F_{,i} = R_{,i}\partial_R F \approx \mathcal{R}_{,i}\partial_R F$$
,

$$F_{,ij} = R_{,ij}\partial_R F + R_{,i}R_{,j}\partial_R^2 F \approx \mathcal{R}_{,ij}\partial_R F + \mathcal{R}_{,i}\mathcal{R}_{,j}\partial_R^2 F .$$

$$\int \frac{F}{a^2}\nabla^2 \left(\Phi + \Psi\right) + \frac{1}{a^2} \left(\nabla^2 \mathcal{R} \partial_R F + \left(\nabla \mathcal{R}\right)^2 \partial_R^2 F\right) - \frac{2}{a^2}\nabla \mathcal{R} \cdot \nabla \Psi \partial_R F = 0.$$

Order-of-magnitude estimation

Expression for the post-Newtonian parameter:

$$\begin{split} \gamma &:= -\frac{\Psi}{\Phi} = \frac{\int \frac{\mathrm{d}^3 x'}{|x - x'|} \left[16\pi G\rho(x') + F\mathcal{R}(x')\right]}{\int \frac{\mathrm{d}^3 x'}{|x - x'|} \left[32\pi G\rho(x') - F\mathcal{R}(x')\right]} \\ \mathcal{R} &:= -\frac{2}{a^2} \nabla^2 \left(\Phi + 2\Psi\right) \\ \nabla^2 \mathcal{R} - M^2 \mathcal{R} + \mu \left(\nabla \mathcal{R}\right)^2 = -\frac{8\pi G M^2 \rho}{F} \\ M^2 &:= F a^2/3 F', \quad \mu := F''/F' \\ \text{(effective mass of the scalaron squared)} \end{split}$$

Inhomogeneous Cosmologies IV, Torun

Spherically symmetric case

Top-hat model $\rho(r) = \begin{cases} \rho_{\star} & (0 \le r < r_{\star}) \\ 0 & (r \ge r_{\star}) \end{cases}$

$$\frac{\partial^2 \mathcal{R}}{\partial r^2} + \frac{2}{r} \frac{\partial \mathcal{R}}{\partial r} - M^2 \mathcal{R} + \mu \left(\frac{\partial \mathcal{R}}{\partial r}\right)^2 = -\frac{8\pi G M^2}{F} \rho(r)$$

Solution:

$$\mathcal{R}(r) = \begin{cases} \mathcal{R}_{\star} + \frac{1}{\mu} \ln(1 + \frac{2A_1}{r} \sinh Mr) & (0 \le r < r_{\star}) \\ \frac{1}{\mu} \ln(1 + \frac{B_2}{r} e^{-Mr}) & (r \ge r_{\star}) \end{cases}$$
$$A_1 = \frac{1 + Mr_{\star}}{2M} \left(e^{-\mu \mathcal{R}_{\star}} - 1 \right) e^{-Mr_{\star}}$$
$$B_2 = \frac{1}{M} \left(e^{\mu \mathcal{R}_{\star}} - 1 \right) \left(Mr_{\star} \cosh Mr_{\star} - \sinh Mr_{\star} \right)$$

Inhomogeneous Cosmologies IV, Torun

Taking the leading order in $Mr_* >> 1$,

$$\gamma \approx \frac{1 + \frac{2}{Mr_{\star}} \frac{\cosh \mu \mathcal{R}_{\star} - 1}{\mu \mathcal{R}_{\star}}}{1 - \frac{2}{Mr_{\star}} \frac{\cosh \mu \mathcal{R}_{\star} - 1}{\mu \mathcal{R}_{\star}}}$$

$$\mu := \frac{\partial_R^2 F}{\partial_R F} = \frac{\zeta_{sss}}{R_c \zeta_{ss}} ; \qquad \mu \mathcal{R}_{\star} = \frac{\mathcal{R}_{\star} \zeta_{sss}}{R_c \zeta_{ss}}$$
can be huge, depending on models

5. Conclusion and outlook

- Improved method for obtaining PPN parameters has been proposed using *cosmological* post-Newtonian approximation
- Cosmological post-Newtonian approximation can be applied to high-curvature and -density regions, and thus useful for the case in which the gravitational screeing mechanism would take place
- More stringent constraints obtained than known ones
- Higher-order approximation for other post-Newtonian parameters