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Outline
• Topological Background 

ØTopological cycles and holes
ØGenus, Euler characteris8c and Minkowski func8onals

• Cosmic topology: Results
ØTopology of the CMB (2D scalar field)
ØTopology of simulated data sets (3D Gaussian fields)

• Conclusion



Func<ons on Manifolds

• Primoridal fluctuation field, CMB

• Grid-densities of N-body simulations
• Study the change in topology of a manifold as induced by the 

excursion sets of the function f



Morse functions

• Let f: Rn → R
• The function is nice

» Domain
» Gradient
» Critical points
» Smooth functions
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Topological cycles/holes

0 dimensional holes : 
gaps between 
connected objects

1 dimensional holes : 
loops/tunnels 2 dimensional holes : 

voids

• intuitive interpretation



Genus

For a connected, orientable surface, the Genus has a linear
relationship with the maximal number of independent simple
closed curves that can be drawn on the surface without
rendering it disconnected

Pranav et. al. MNRAS, 485 (3), 4167-4208 (2019)



Euler characteristic
•Originally defined for polyhedra

FEV +-=c

Tetrahedron 
V = 4, E = 6, F = 4

Cube 
V = 8, E = 12, F = 6

octahedron 
V = 6, E = 12, F = 8

• Modern definiFon through algebraic topology, specifically Homology
= 2
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Euler characteristic and/or genus

Genus 0                         genus 1                         genus 2                          genus 3
Euler 2                         Euler 0                          Euler -2                          Euler -4

Euler �(A) = 2� g(A) genus

� = 1� = 1� 3 = �2



Minkowski Functionals
• For a d-dimensional manifold, M, there are  (d + 1) 
Minkowski func8onals

•Predominantly geometric in nature 

•While in R3,
Q0 :  volume func3onal
Q1 :  area func3onal 
Q2 : integrated mean curvature
Q3 : Gaussian curvature

),...,0( dkQk =



Genus,  Euler  &   Betti  

� Euler – Poincare formula 

Relationship between Betti Numbers & Euler Characteristic  �:
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(Unexpected) Topology of the 
CMB



Cosmic timeline



Planck Data

Specified on S2, as the deviation from 
the background average.

!!! Zone of avoidance - obscured by 
foregrounds



Planck data

• Sky observed in 8 dis8nct frequency: 30,  45, 70 (LFI), and 100, 140, 220, 350, 550 and 850 GHz 
(HFI).

• Final observa8onal CMB maps synthesized from the frequency maps using four different 
component separa8on methods: C-R, NILC, SEVEM & SMICA

• Observed maps not reliable in certain zones due to obfusca8on by foregrounds
• FFP8 simula8ons  used test the Gaussian hypothesis – ini8al input for the simula8ons is a 

Gaussian random field

• Realis8c maps that model the effects for known foregrounds e.g., gravita8onal lensing, Reyleigh
scaiering and more

• 1000 maps employed to compute the sta8s8cs
• More than 3-sigma devia8ons at N = 32, to 8 with respect to Gaussian ffp8 simula8ons, for the 

components and holes



Rela<ve Homology

Pranav et. al. A&A, submitted



Relative Loops in the CMB



Masked degraded maps 

• Maps degraded to N_side = 1024, 512, 256, 128, 64, 32, 16, and 8 (not shown)
• Binary Mask degraded similarly (converts it to non-binary) – reconverted to binary by sekng the 

threshold 0.9 (as done by Planck coll.) (addi8onally more thresholds: 0.7, 0.8 and 0.95)
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Euler Characteristic (betti0 – betti1)



Sta<s<cal tests

• The data consists of topological summaries (b0, b1, EC) obtained from 1000 simula8ons, and observed 
CMB field

• Goal: es8mate the probability that the physical model that produced the simula8ons would produce 
quan88es consistent with those from the  observed CMB field

• Let x_i \in \R^m$, $i=1,\ld, be a sample of i.i.d. $m$-dimensional  vectors,  drawn from a distribu8on F. 
Let  $\y \in \R^   be another sample point, assumed to be drawn from a distribu8on G. 

• Test the (null) hypothesis that F=G

• $p$-values compute the probability that y is `consistent' with this hypothesis. 

• Two methods : 
Ø Mahalanobis Distance or chi^2 test : parametric (Prasanta Chandra Mahalanobis, 1936)
Ø Tukey depth : non-parametric (John Tukey, 1974)



Pranav et. al. A&A, accepted



PC graphs

Mahalanobis/ chi^2

Tukey depth



More tests: smoothed maps

• Maps smoothed to fwhm = 1, 2, 3, 4, 5, and 6 degrees
• Binary Mask degraded similarly (converts it to non binary) – reconverted to binary by setting the 

threshold 0.9 (as done by planck coll.)

Pranav et. al. A&A, accepted



More tests: inverted mask

Pranav et. al, in prep

• Mask inverted and zone of reconstruction analyzed

• No significant difference between observations and 
simulations



CMB Loops



Gaussian fields: Euler and Minkowski
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Gaussian fields: Betti Topology

• Shape of Bek numbers dependent on  power 
spectrum; EC and MF are not

• Goi et. Al. (1986) claim the topology of LSS at 
median density to be Sponge-like based on EC

• Bek numbers reveal it is not so even for the 
simplest case of GRF

Pranav et. al, MNRAS 485 (3), 4167 - 4208



Conclusions

• Topology and geometry ideal tool for studying connectivity and 
the nature of complex spatial  patterns manifested in the 
universe
• The topology of the CMB temperature fluctuations deviant from 

realistic simulations based on Gaussian prescriptions
• Earlier measurement of CMB by WMAP also shows mildly 

significant Euler characteristic (Eriksen 04).
• Not due to cold spot or other directional anomalies, as the 

loops and isolated components cover all sky.
• Betti numbers of Gaussian fields show a dependence on power 

spectrum, unlike MFs.



Homology & Persistence 
Voronoi Models



Voronoi Clustering Models

Template/Skeleton:
● Galaxy distributions in 

weblike networks
● Testing statistical/clustering 

characteristics of weblike
galaxy distributions

Advantages:
● Flexible 

low computational cost
● Versatile

exploring widely different   
cosmological models

Web Elements: 
Wall: projection onto Voronoi wall
Filament: projection onto Voronoi edge
Cluster: projection towards Voronoi vertex



Single Component Models

Pranav et. al 2016, Monthly no8ces of 
Royal astronomical Society, 465



Persistence : Single component models

Pranav et. al 2016, Monthly notices 
of Royal astronomical Society, 465



Evolution Models

Pranav et. al 2016, Monthly no8ces 
of Royal astronomical Society, 465



Persistence : Evolution Models

Pranav et. al 2016, Monthly notices 
of Royal astronomical Society, 465



Homology & Persistence 
Hierarchical models



Soneira-Peebles Models:
Heuristic description of hierarchical clustering

Parameters of the model :
• Number of levels (n)
• Number of children (η)
• Ratio between the radius of parent and children spheres(λ)

Randomly place η spheres inside the top-level and continue for 
all levels

Pranav et. al 2016, Monthly notices 
of Royal astronomical Society, 465
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And now with galac8c densi8es

Center for Astrophysics (CfA) survey

10,506 galaxies in the cone-shaped survey region, which extends
out to 135 megaparsecs in the northern hemisphere, with the earth
at the apex of the cone.

The observed EC of the set of high-density regions of the CfA
Galaxy survey. Also shown is the expected EC for randomly
distributed galaxies with no structure; the CfA data has smaller EC
than expected, indicating less “blobs” and more clumping of
galaxies into clusters, strings, and “walls”.

SDSS
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Topology and Geometry of 3D 
Gaussian fields



Felix:
Filament Explorer



Morse functions

• Let f: Rn → R
• The func8on is nice

» Domain
» Gradient
» Critical points
» Smooth functions
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Morse geometry

minimum 1-saddle

2-saddle maximum



Morse geometry :
Filaments as ascending manifolds of 2-saddles

Integral lines : maximal curves in the domain of f that align 
with the gradient

Ascending manifold  of a critical point p : set of 
all integral lines that originate at p, along with p

Descending manifold  of a critical point p : set 
of all integral lines that terminate at p, along 
with p



Morse-Smale Complex

•Morse-Smale complex : 
parFFon of the domain into 
cells formed by the collecFon of 
integral lines that share
a common source and a 
common desFnaFon

• The funcFon f is called a 
Morse-Smale funcFon if the 
ascending and descending 
manifolds of all pairs of criFcal 
points intersect only 
transversally

•Combinatorial representaFon : 
nodes along with the 1-D arcs 
that connect them



Morse-Smale Complex: 
simplifica<on & hierarchy



Density range based filament estimation

•filaments identified by the density range of maxima and 
2-saddles



Density range based filament estimation

•filaments identified by the density range of maxima and 
2-saddles



Conclusions

• Cosmic mass distribu<on forms and evolves hierarchically : 
structures ubiquitous at all density and spa<al scale ranges
• Topology ideal tool for studying complex spa<al  pa\erns 

manifested in the universe
• Homology and persistence resolve differences between models 

where EC and MF are inadequate
• Persistence provides rich language for descrip<on of mul<-scale 

(hierarchical) topology of cosmic structure
• Homology and persistence capture the different morphologies 

and hierarchies of the cosmic mass distribu<on 
• Hints of viola<on of Gaussianity and isotropy captured by 

homology and persistence


