Cosmic inhomogeneity and topology II

Boud Roukema Institute of Astronomy Nicolaus Copernicus University

2021-07-27 + **II: 2021-07-29** https://cosmo.torun.pl/~boud/Roukema20210727CIRM.pdf https://cosmo.torun.pl/~boud/Roukema20210729CIRM.pdf

intuition 1: embed in higher dim. space

intuition 1: embed in higher dim. space

- intuition 1: embed in higher dim. space
- intuition 2: fundamental domain

- intuition 1: embed in higher dim. space
- intuition 2: fundamental domain

- intuition 1: embed in higher dim. space
- I intuition 2: fundamental domain
- intuition 3: universal covering space

- intuition 1: embed in higher dim. space
- intuition 2: fundamental domain
- intuition 3: universal covering space

- distances on the 2-sphere, embedded in \mathbb{R}^3
 - $x_i = R_{\rm C} \cos \delta_i \cos \alpha_i$

$$y_i = R_{\rm C} \cos \delta_i \sin \alpha_i$$

$$w_i = R_{\rm C} \sin \delta_i$$

$$\langle \mathbf{a}_1, \mathbf{a}_2 \rangle = x_1 x_2 + y_1 y_2 + w_1 w_2$$

but also:

$$\langle \mathbf{a}_1, \mathbf{a}_2 \rangle = R^2 \cos \theta_{12}.$$

a distance in S² = arc-length in \mathbb{R}^3 : $\chi_{12} = R_C \ \theta_{12} = R_C \ \cos^{-1} \left[\langle \mathbf{a}_1, \mathbf{a}_2 \rangle / R_C^2 \right]$

positive curvature

positive curvature

negative curvature

negative curvature

distances on $\mathbf{S}^3 \subset \mathbb{R}^4$ or $\mathbf{H}^3 \subset \mathbf{M}^4$ $\Sigma(\chi_i) := \begin{cases} R_{\rm C} \sinh(\chi_i/R_{\rm C}) & k < 0 \\ \chi_i & k = 0 \\ R_{\rm C} \sin(\chi_i/R_{\rm C}) & k > 0 \end{cases}$

$$\begin{array}{l} \mathbf{distances \ on \ } \mathbf{S}^{3} \subset \mathbb{R}^{4} \ \mathbf{or \ } \mathbf{H}^{3} \subset \mathbf{M}^{4} \\ \Sigma(\chi_{i}) \coloneqq \begin{cases} R_{\mathrm{C}} \sinh(\chi_{i}/R_{\mathrm{C}}) & k < 0 \\ \chi_{i} & k = 0 \\ R_{\mathrm{C}} \sin(\chi_{i}/R_{\mathrm{C}}) & k > 0 \end{cases} \\ x_{i} &= \Sigma(\chi_{i}) \cos \delta_{i} \cos \alpha_{i} \\ y_{i} &= \Sigma(\chi_{i}) \cos \delta_{i} \sin \alpha_{i} \\ z_{i} &= \Sigma(\chi_{i}) \sin \delta_{i} \\ w_{i} &= \begin{cases} R_{\mathrm{C}} \cosh(\chi_{i}/R_{\mathrm{C}}) & k < 0 \\ 0 & k = 0 \\ R_{\mathrm{C}} \cos(\chi_{i}/R_{\mathrm{C}}) & k > 0 \end{cases} \end{cases}$$

$$\begin{aligned} \operatorname{distances \ on \ } S^{3} \subset \mathbb{R}^{4} \ \operatorname{or \ } H^{3} \subset \mathbb{M}^{4} \\ \Sigma(\chi_{i}) &:= \begin{cases} R_{\mathrm{C}} \sinh(\chi_{i}/R_{\mathrm{C}}) & k < 0 \\ \chi_{i} & k = 0 \\ R_{\mathrm{C}} \sin(\chi_{i}/R_{\mathrm{C}}) & k > 0 \end{cases} \\ x_{i} &= \Sigma(\chi_{i}) \cos \delta_{i} \cos \alpha_{i} \\ y_{i} &= \Sigma(\chi_{i}) \cos \delta_{i} \sin \alpha_{i} \\ z_{i} &= \Sigma(\chi_{i}) \sin \delta_{i} \\ w_{i} &= \begin{cases} R_{\mathrm{C}} \cosh(\chi_{i}/R_{\mathrm{C}}) & k < 0 \\ 0 & k = 0 \\ R_{\mathrm{C}} \cos(\chi_{i}/R_{\mathrm{C}}) & k > 0 \end{cases} \\ \\ \operatorname{metric \ on \ } S^{3} \ (\operatorname{or \ } \mathbb{R}^{3} \ \operatorname{or \ } H^{3}): \\ \mathrm{d} s^{2} &= \begin{cases} (k/|k|) \ (\mathrm{d} x^{2} + \mathrm{d} y^{2} + \mathrm{d} z^{2}) + \mathrm{d} w^{2} & k \neq 0 \\ \mathrm{d} x^{2} + \mathrm{d} y^{2} + \mathrm{d} z^{2} & k = 0 \end{cases} \end{aligned}$$

$$\begin{array}{l} \operatorname{distances \ on \ } S^{3} \subset \mathbb{R}^{4} \ \operatorname{or \ } H^{3} \subset \mathbb{M}^{4} \\ \Sigma(\chi_{i}) \coloneqq \begin{cases} R_{\mathrm{C}} \sinh(\chi_{i}/R_{\mathrm{C}}) & k < 0 \\ \chi_{i} & k = 0 \\ R_{\mathrm{C}} \sin(\chi_{i}/R_{\mathrm{C}}) & k > 0 \end{cases} \\ x_{i} &= \Sigma(\chi_{i}) \cos \delta_{i} \cos \alpha_{i} \\ y_{i} &= \Sigma(\chi_{i}) \cos \delta_{i} \sin \alpha_{i} \\ z_{i} &= \Sigma(\chi_{i}) \sin \delta_{i} \\ w_{i} &= \begin{cases} R_{\mathrm{C}} \cosh(\chi_{i}/R_{\mathrm{C}}) & k < 0 \\ 0 & k = 0 \\ R_{\mathrm{C}} \cos(\chi_{i}/R_{\mathrm{C}}) & k > 0 \end{cases} \end{cases}$$

inner product:

$$\langle \mathbf{a}_1, \mathbf{a}_2 \rangle \equiv \begin{cases} (k/|k|) (x_1 x_2 + y_1 y_2 + z_1 z_2) + w_1 w_2 & k \neq 0 \\ x_1 x_2 + y_1 y_2 + z_1 z_2 & k = 0 \end{cases}$$

$$\begin{array}{l} \operatorname{distances \ on \ } S^{3} \subset \mathbb{R}^{4} \ \operatorname{or \ } H^{3} \subset \mathbb{M}^{4} \\ \Sigma(\chi_{i}) \coloneqq \begin{cases} R_{\mathrm{C}} \sinh(\chi_{i}/R_{\mathrm{C}}) & k < 0 \\ \chi_{i} & k = 0 \\ R_{\mathrm{C}} \sin(\chi_{i}/R_{\mathrm{C}}) & k > 0 \end{cases} \\ x_{i} &= \Sigma(\chi_{i}) \cos \delta_{i} \cos \alpha_{i} \\ y_{i} &= \Sigma(\chi_{i}) \cos \delta_{i} \sin \alpha_{i} \\ z_{i} &= \Sigma(\chi_{i}) \sin \delta_{i} \\ w_{i} &= \begin{cases} R_{\mathrm{C}} \cosh(\chi_{i}/R_{\mathrm{C}}) & k < 0 \\ 0 & k = 0 \\ R_{\mathrm{C}} \cos(\chi_{i}/R_{\mathrm{C}}) & k > 0 \end{cases} \\ \chi_{12} = \begin{cases} R_{\mathrm{C}} \cosh^{-1} \left[\langle \mathbf{a}_{1}, \mathbf{a}_{2} \rangle / R_{\mathrm{C}}^{2} \right] & k < 0 \\ \sqrt{\langle \mathbf{a}_{1} - \mathbf{a}_{2}, \mathbf{a}_{1} - \mathbf{a}_{2} \rangle} & k = 0 \\ R_{\mathrm{C}} \cos^{-1} \left[\langle \mathbf{a}_{1}, \mathbf{a}_{2} \rangle / R_{\mathrm{C}}^{2} \right] & k > 0 \end{cases} \end{array}$$

Cosmic inhomogeneity and topology II \bullet intuition $d(x,y) \mid \tilde{M}/\Gamma \mid \ddot{x} \mid$ obs 3D 2D \bullet

 \Rightarrow

distances on
$$S^3 \subset \mathbb{R}^4$$
 or $H^3 \subset M^4$
 $x_i = \Sigma(\chi_i) \cos \delta_i \cos \alpha_i$
 $y_i = \Sigma(\chi_i) \cos \delta_i \sin \alpha_i$
 $z_i = \Sigma(\chi_i) \sin \delta_i$
 $w_i = \begin{cases} R_{\rm C} \cosh(\chi_i/R_{\rm C}) & k < 0 \\ 0 & k = 0 \\ R_{\rm C} \cos(\chi_i/R_{\rm C}) & k > 0 \end{cases}$
 $\chi_{12} = \begin{cases} R_{\rm C} \cosh^{-1} [\langle \mathbf{a}_1, \mathbf{a}_2 \rangle / R_{\rm C}^2] & k < 0 \\ \sqrt{\langle \mathbf{a}_1 - \mathbf{a}_2, \mathbf{a}_1 - \mathbf{a}_2 \rangle} & k = 0 \\ R_{\rm C} \cos^{-1} [\langle \mathbf{a}_1, \mathbf{a}_2 \rangle / R_{\rm C}^2] & k > 0 \end{cases}$
a distance in S³ is an arc-length in \mathbb{R}^4

$$\begin{aligned} & \operatorname{distances on } \mathbf{S}^{3} \subset \mathbb{R}^{4} \text{ or } \mathbf{H}^{3} \subset \mathbf{M}^{4} \\ & x_{i} = \Sigma(\chi_{i}) \cos \delta_{i} \cos \alpha_{i} \\ & y_{i} = \Sigma(\chi_{i}) \cos \delta_{i} \sin \alpha_{i} \\ & z_{i} = \Sigma(\chi_{i}) \sin \delta_{i} \\ & w_{i} = \begin{cases} R_{C} \cosh(\chi_{i}/R_{C}) & k < 0 \\ 0 & k = 0 \\ R_{C} \cos(\chi_{i}/R_{C}) & k > 0 \end{cases} \\ & \chi_{12} = \begin{cases} R_{C} \cosh^{-1} \left[\langle \mathbf{a}_{1}, \mathbf{a}_{2} \rangle / R_{C}^{2} \right] & k < 0 \\ \sqrt{\langle \mathbf{a}_{1} - \mathbf{a}_{2}, \mathbf{a}_{1} - \mathbf{a}_{2} \rangle} & k = 0 \\ R_{C} \cos^{-1} \left[\langle \mathbf{a}_{1}, \mathbf{a}_{2} \rangle / R_{C}^{2} \right] & k > 0 \end{cases} \\ \\ & a \text{ distance in } \mathbf{S}^{3} \text{ is an arc-length in } \mathbb{R}^{4} \end{aligned}$$

$$distances on S^{3} \subset \mathbb{R}^{4} \text{ or } H^{3} \subset M^{4}$$

$$x_{i} = \Sigma(\chi_{i}) \cos \delta_{i} \cos \alpha_{i}$$

$$y_{i} = \Sigma(\chi_{i}) \cos \delta_{i} \sin \alpha_{i}$$

$$z_{i} = \Sigma(\chi_{i}) \sin \delta_{i}$$

$$w_{i} = \begin{cases} R_{C} \cosh(\chi_{i}/R_{C}) & k < 0 \\ 0 & k = 0 \\ R_{C} \cos(\chi_{i}/R_{C}) & k > 0 \end{cases}$$

$$\Rightarrow \qquad \chi_{12} = \begin{cases} R_{C} \cosh^{-1} \left[\langle \mathbf{a}_{1}, \mathbf{a}_{2} \rangle / R_{C}^{2} \right] & k < 0 \\ \sqrt{\langle \mathbf{a}_{1} - \mathbf{a}_{2}, \mathbf{a}_{1} - \mathbf{a}_{2} \rangle} & k = 0 \\ R_{C} \cos^{-1} \left[\langle \mathbf{a}_{1}, \mathbf{a}_{2} \rangle / R_{C}^{2} \right] & k > 0 \end{cases}$$

$$a \text{ distance in S^{3} is an arc-length in } \mathbb{R}^{4}$$
 arXiv:astro-ph/0102099
$$a \text{ distance in H^{3} is an arc-length in } M^{4}$$

<u>3 intuitive methods</u>

- <u>3 intuitive methods</u>
- \tilde{M} = universal covering space

- <u>3 intuitive methods</u>
- \tilde{M} = universal covering space= "apparent space"

- <u>3 intuitive methods</u>
- $\tilde{M} = \text{universal covering space} = \text{``apparent space''}$ $\tilde{M} = \begin{cases} H^3 & k < 0 \end{cases}$

- <u>3 intuitive methods</u>
- $\tilde{M} = universal covering space= "apparent space"$

$$\tilde{M} = \begin{cases} H^3 & k < 0 \\ \mathbb{R}^3 & k = 0 \end{cases}$$

<u>3 intuitive methods</u>

 \tilde{M} = universal covering space= "apparent space"

$$\tilde{M} = \begin{cases} H^3 & k < 0 \\ \mathbb{R}^3 & k = 0 \\ S^3 & k > 0 \end{cases}$$

- <u>3 intuitive methods</u>
- \tilde{M} = universal covering space= "apparent space"

$$\tilde{M} = \begin{cases} \mathrm{H}^3 & k < 0\\ \mathbb{R}^3 & k = 0\\ \mathrm{S}^3 & k > 0 \end{cases}$$

 Γ = a group of holonomies (isometries) of $ilde{M}$

- <u>3 intuitive methods</u>
- $\tilde{M} = universal covering space= "apparent space"$

$$\tilde{M} = \begin{cases} \mathrm{H}^3 & k < 0\\ \mathbb{R}^3 & k = 0\\ \mathrm{S}^3 & k > 0 \end{cases}$$

• $\Gamma = a$ group of holonomies (isometries) of \tilde{M}

the 3-manifold

- <u>3 intuitive methods</u>
- $\tilde{M} = universal covering space= "apparent space"$

$$\tilde{M} = \begin{cases} \mathrm{H}^3 & k < 0\\ \mathbb{R}^3 & k = 0\\ \mathrm{S}^3 & k > 0 \end{cases}$$

I Γ = a group of holonomies (isometries) of $ilde{M}$

the 3-space for FLRW cosmology is $M = \tilde{M}/\Gamma$

<u>3 intuitive methods</u>

 \tilde{M} = universal covering space= "apparent space"

$$\tilde{M} = \begin{cases} \mathrm{H}^3 & k < 0\\ \mathbb{R}^3 & k = 0\\ \mathrm{S}^3 & k > 0 \end{cases}$$

 Γ = a group of holonomies (isometries) of $ilde{M}$

the 3-space for FLRW cosmology is $M = \tilde{M}/\Gamma$

each of the <u>3 ways</u> of thinking of \tilde{M}/Γ has advantages and disadvantages

<u>3 intuitive methods</u>

 $\tilde{M} = universal covering space= "apparent space"$

$$\tilde{M} = \begin{cases} \mathrm{H}^3 & k < 0\\ \mathbb{R}^3 & k = 0\\ \mathrm{S}^3 & k > 0 \end{cases}$$

 Γ = a group of holonomies (isometries) of $ilde{M}$

the 3-space for FLRW cosmology is
$$M = \tilde{M}/\Gamma$$

- each of the <u>3 ways</u> of thinking of \tilde{M}/Γ has advantages and disadvantages
 - fundamental domain (FD) is not unique;

<u>3 intuitive methods</u>

 $\tilde{M} = universal covering space= "apparent space"$

$$\tilde{M} = \begin{cases} \mathrm{H}^3 & k < 0\\ \mathbb{R}^3 & k = 0\\ \mathrm{S}^3 & k > 0 \end{cases}$$

 Γ = a group of holonomies (isometries) of $ilde{M}$

the 3-space for FLRW cosmology is $M = \tilde{M}/\Gamma$

- each of the <u>3 ways</u> of thinking of \tilde{M}/Γ has advantages and disadvantages
- fundamental domain (FD) is not unique; shape of FD may be non-unique

3D flat examples arXiv:astro-ph/9901364

Cosmic inhomogeneity and topology II \bullet intuition $d(x, y) \mid \tilde{M}/\Gamma \mid \ddot{x} \mid$ obs 3D 2D \bullet

Cosmic topology: definitions size of universe:

 r_{-} : biggest sphere *inside* FD
Cosmic topology: definitions size of universe:

- r_{-} : biggest sphere *inside* FD
- r_+ : smallest sphere *contain-ing* FD

Cosmic topology: definitions size of universe:

- r_{-} : biggest sphere *inside* FD
- r_+ : smallest sphere *contain-ing* FD
- $2r_{\rm inj}$: smallest closed spatial geodesic

Cosmic topology: definitions size of universe:

- r_{-} : biggest sphere *inside* FD
- r_+ : smallest sphere *contain-ing* FD
- $2r_{\rm inj}$: smallest closed spatial geodesic

 $V_{
m FD}^{1/3}$ volume cube root

Cosmic topology: definitions size of universe:

- r_{-} : biggest sphere *inside* FD
- r_+ : smallest sphere *contain-ing* FD
- $2r_{\rm inj}$: smallest closed spatial geodesic
- $V_{
 m FD}^{1/3}$ volume cube root

$$r_{-} \leq r_{+}$$
 always

Cosmic topology: definitions size of universe:

- r_{-} : biggest sphere *inside* FD
- r_+ : smallest sphere *contain-ing* FD
- $2r_{\rm inj}$: smallest closed spatial geodesic
- $V_{
 m FD}^{1/3}$ volume cube root

$$r_{-} \leq r_{+}$$
 always

$$r_{
m inj} < r_{-} ~{
m or}~ r_{
m inj} \ll V_{
m FD}^{1/3}$$
 possible

■ flat 3-spaces: 18

■ flat 3-spaces: 18

some finite,

- flat 3-spaces: 18
 - some finite, e.g. T^3 ,

flat 3-spaces: 18

some finite, e.g. T^3 , some infinite,

- flat 3-spaces: 18
 - some finite, e.g. T^3 , some infinite, e.g. \mathbb{R}^3

- flat 3-spaces: 18
 - some finite, e.g. T^3 , some infinite, e.g. \mathbb{R}^3
 - spherical: arXiv:gr-qc/0106033 Gausmann et al.

- flat 3-spaces: 18
 - some finite, e.g. T^3 , some infinite, e.g. \mathbb{R}^3
 - spherical: arXiv:gr-qc/0106033 Gausmann et al.
 - S^3/Γ —countably infinite set of 3-spaces

- flat 3-spaces: 18
 - some finite, e.g. T^3 , some infinite, e.g. \mathbb{R}^3
 - spherical: arXiv:gr-qc/0106033 Gausmann et al.
 - S^3/Γ —countably infinite set of 3-spaces
 - all finite ("compact")

- flat 3-spaces: 18
 - some finite, e.g. T^3 , some infinite, e.g. \mathbb{R}^3
 - spherical: arXiv:gr-qc/0106033 Gausmann et al.
 - S^3/Γ —countably infinite set of 3-spaces
 - all finite ("compact") $\Rightarrow \Gamma = finite group$

flat 3-spaces: 18

- some finite, e.g. T^3 , some infinite, e.g. \mathbb{R}^3
- spherical: arXiv:gr-qc/0106033 Gausmann et al.
- S^3/Γ —countably infinite set of 3-spaces
- all finite ("compact") $\Rightarrow \Gamma = finite group$
- completely classified (Threlfall & Seifert 1930)

flat 3-spaces: 18

- some finite, e.g. T^3 , some infinite, e.g. \mathbb{R}^3
- spherical: arXiv:gr-qc/0106033 Gausmann et al.
- S^3/Γ —countably infinite set of 3-spaces
- all finite ("compact") $\Rightarrow \Gamma = finite group$
- completely classified (Threlfall & Seifert 1930)

flat 3-spaces: 18

- some finite, e.g. T^3 , some infinite, e.g. \mathbb{R}^3
- spherical: arXiv:gr-qc/0106033 Gausmann et al.
- S^3/Γ —countably infinite set of 3-spaces
- all finite ("compact") $\Rightarrow \Gamma = finite group$
- completely classified (Threlfall & Seifert 1930)
- igstarrow S 3 , S^3/\mathbb{Z}_2 , lens spaces ,

- flat 3-spaces: 18
 - some finite, e.g. T^3 , some infinite, e.g. \mathbb{R}^3
 - spherical: arXiv:gr-qc/0106033 Gausmann et al.
 - S^3/Γ —countably infinite set of 3-spaces
 - all finite ("compact") $\Rightarrow \Gamma = finite group$
 - completely classified (Threlfall & Seifert 1930)
 - S³, S^3/\mathbb{Z}_2 , lens spaces ,"well-proportioned" spaces, ...

- flat 3-spaces: 18
 - some finite, e.g. T^3 , some infinite, e.g. \mathbb{R}^3
 - spherical: arXiv:gr-qc/0106033 Gausmann et al.
 - S^3/Γ —countably infinite set of 3-spaces
 - all finite ("compact") $\Rightarrow \Gamma = finite group$
 - completely classified (Threlfall & Seifert 1930)
 - S³, S^3/\mathbb{Z}_2 , lens spaces ,"well-proportioned" spaces, ...
 - w:Poincaré Conjecture "Every simply connected, closed 3-manifold is homeomorphic to the 3-sphere." w:Grigori Perelman, arXiv:math/0211159 + arXiv:math/0303109 + arXiv:math/0307245

flat 3-spaces: 18

- some finite, e.g. T^3 , some infinite, e.g. \mathbb{R}^3
- spherical: arXiv:gr-qc/0106033 Gausmann et al.
- S^3/Γ —countably infinite set of 3-spaces
- all finite ("compact") $\Rightarrow \Gamma = finite group$
- completely classified (Threlfall & Seifert 1930)
- S³, S^3/\mathbb{Z}_2 , lens spaces ,"well-proportioned" spaces, . . .

hyperbolic:

countably infinite superset known

flat 3-spaces: 18

- some finite, e.g. T^3 , some infinite, e.g. \mathbb{R}^3
- spherical: arXiv:gr-qc/0106033 Gausmann et al.
- S^3/Γ —countably infinite set of 3-spaces
- all finite ("compact") $\Rightarrow \Gamma = finite group$
- completely classified (Threlfall & Seifert 1930)
- S³, S^3/\mathbb{Z}_2 , lens spaces ,"well-proportioned" spaces, . . .

hyperbolic:

- countably infinite superset known
- some finite, some infinite

- flat 3-spaces: 18
 - some finite, e.g. T^3 , some infinite, e.g. \mathbb{R}^3
 - spherical: arXiv:gr-qc/0106033 Gausmann et al.
 - S^3/Γ —countably infinite set of 3-spaces
 - all finite ("compact") $\Rightarrow \Gamma = finite group$
 - completely classified (Threlfall & Seifert 1930)
 - S³, S^3/\mathbb{Z}_2 , lens spaces ,"well-proportioned" spaces, ...

hyperbolic:

- countably infinite superset known
- some finite, some infinite
- ◆ active research area, e.g. arXiv:0705.4325 min. vol.

cosmic topology theory:

cosmic topology theory:

(quantum gravity arguments)

cosmic topology theory:

- (quantum gravity arguments)
- global spatial topology: topological acceleration (patching away black holes): Roukema+2007 (A&A 2007) arXiv:astro-ph/0602159

cosmic topology theory:

- (quantum gravity arguments)
- global spatial topology: topological acceleration (patching away black holes): Roukema+2007 (A&A 2007) arXiv:astro-ph/0602159
 - scalar averaging and dynamical topology change (e.g. black holes): Brunswic & Buchert (CQG, 2020) arXiv:2002.08336

$$\ddot{x} \approx -G\frac{m}{x^2} + Gm\left[\frac{1}{(L-x)^2} - \frac{1}{(L+x)^2}\right]$$

$$\ddot{x} \approx -G\frac{m}{x^2} + Gm\left[\frac{1}{(L-x)^2} - \frac{1}{(L+x)^2}\right]$$
$$\approx -G\frac{m}{x^2} + \frac{4Gm}{L^2}\frac{x}{L}$$

$$\ddot{x} \approx -G\frac{m}{x^2} + Gm\left[\frac{1}{(L-x)^2} - \frac{1}{(L+x)^2}\right] \\ \approx -G\frac{m}{x^2} + \frac{4Gm}{L^2}\frac{x}{L}$$

$$\ddot{x}_{\text{resid}} \propto (x/L)^1 + \dots$$

Cosmic inhomogeneity and topology II \bullet intuition $d(x, y) \mid \tilde{M}/\Gamma \mid \ddot{x} \mid$ obs 3D 2D \bullet

$$\ddot{x} \approx -G\frac{m}{x^2} + Gm\left[\frac{1}{(L-x)^2} - \frac{1}{(L+x)^2}\right]$$
$$\approx -G\frac{m}{x^2} + \frac{4Gm}{L^2}\frac{x}{L}$$

$$\ddot{x}_{\text{resid}} \propto (x/L)^1 + \dots$$

topological acceleration— arXiv:astro-ph/0602159

Cosmic inhomogeneity and topology II \bullet intuition $d(x, y) \mid \tilde{M}/\Gamma \mid \ddot{x} \mid$ obs 3D 2D \bullet

Heuristic top. accel.

- weak-field gravity of distant, multiple images
- covering space \mathbb{R}^3 or \mathbb{S}^3
- calculations made in covering space
 - consider only first layer of topological images (e.g. particle horizon)

 S^3/O^* (truncated cube space) $\Rightarrow \ddot{x}_{resid} \propto (x/R_C)^3 + \dots$

 S^3/I^* (Poincaré dodecahedral space) $\Rightarrow \ddot{x}_{resid} \propto (x/R_C)^5 + ...$
$T^3, S^3/\Gamma$

- Some spaces are more equal than others.
- Roukema & Różański arXiv:0902.3402, A&A, 502, 27
- Newton–Cartan approach for preparing for full GR approach: Vigneron (2020) arXiv:2010.10247; Vigneron (2021) arXiv:2012.10213;

empirical strategies: arXiv:astro-ph/0010189

empirical strategies: arXiv:astro-ph/0010189

A. multiple topological images:

empirical strategies: arXiv:astro-ph/0010189

A. multiple topological images:

A.i 3D (grav collapsed objects):

empirical strategies: arXiv:astro-ph/0010189

A. multiple topological images:

A.i 3D (grav collapsed objects):

A.i.1 local isometries—collect "type I pairs" or "local pairs" (pair types)

empirical strategies: arXiv:astro-ph/0010189

A. multiple topological images:

A.i 3D (grav collapsed objects):

A.i.1 local isometries—collect "type I pairs" or "local pairs" (pair types)

A.i.2 cosmic crystallography—collect "type II pairs" or "holonomy pairs"

empirical strategies: arXiv:astro-ph/0010189

- A. multiple topological images:
 - A.i 3D (grav collapsed objects):
 - A.i.1 local isometries—collect "type I pairs" or "local pairs" (pair types)
 - A.i.2 cosmic crystallography—collect "type II pairs" or "holonomy pairs"
 - A.i.3 successive filters (obs)
 - A.i.4 characteristics of individual objects

A. multiple topological images:

A. multiple topological images:

A.ii 2D (e.g. microwave background = CMB):

A. multiple topological images:

A.ii 2D (e.g. microwave background = CMB):

A.ii.1 cutoff of large-scale power [also 3D] (obs)

A. multiple topological images:

A.ii 2D (e.g. microwave background = CMB):

A.ii.1 cutoff of large-scale power [also 3D] (obs)

A.ii.2 identified circles principle, (obs)

A. multiple topological images:

A.ii 2D (e.g. microwave background = CMB):

A.ii.1 cutoff of large-scale power [also 3D] (obs)

A.ii.2 identified circles principle, (obs)

A.ii.3 matched discs corollary

- A. multiple topological images:
 - A.ii 2D (e.g. microwave background = CMB):
 - A.ii.1 cutoff of large-scale power [also 3D] (obs)
 - A.ii.2 identified circles principle, (obs)
 - A.ii.3 matched discs corollary
 - A.ii.4 patterns of spots

- A. multiple topological images:
 - A.ii 2D (e.g. microwave background = CMB):
 - A.ii.1 cutoff of large-scale power [also 3D] (obs)
 - A.ii.2 identified circles principle, (obs)
 - A.ii.3 matched discs corollary
 - A.ii.4 patterns of spots
 - A.ii.5 perturbation statistics assumptions

A. multiple topological images:

A.ii 2D (e.g. microwave background = CMB):

- A.ii.1 cutoff of large-scale power [also 3D] (obs)
- A.ii.2 identified circles principle, (obs)
- A.ii.3 matched discs corollary
- A.ii.4 patterns of spots
- A.ii.5 perturbation statistics assumptions

B. other:

A. multiple topological images:

A.ii 2D (e.g. microwave background = CMB):

- A.ii.1 cutoff of large-scale power [also 3D] (obs)
- A.ii.2 identified circles principle, (obs)
- A.ii.3 matched discs corollary
- A.ii.4 patterns of spots
- A.ii.5 perturbation statistics assumptions
- B. other:
 - B.i cosmic strings

A. multiple topological images:

A.ii 2D (e.g. microwave background = CMB):

- A.ii.1 cutoff of large-scale power [also 3D] (obs)
- A.ii.2 identified circles principle, (obs)
- A.ii.3 matched discs corollary
- A.ii.4 patterns of spots
- A.ii.5 perturbation statistics assumptions
- B. other:
 - B.i cosmic strings
 - B.ii topological <u>acceleration</u>

Type I pairs = local pairs or n-tuples

Type I pairs = local pairs or n-tuples Type II pairs = fundamental length pairs

Type I pairs = local pairs or *n*-tuples Type II pairs = fundamental length pairs PSH = pair separation histogram

Type I pairs = local pairs or n-tuples Type II pairs = fundamental length pairs PSH = pair separation histogram

Type I pairs = local pairs or *n*-tuples Type II pairs = fundamental length pairs PSH = pair separation histogram

quasar–galaxy alignments, Fagundes (1985) ADS:1985ApJ...291..450F;

- quasar–galaxy alignments, Fagundes (1985) ADS:1985ApJ...291..450F;
- opposite QSO pairs: Demiański & Lapucha (1987); Fagundes & Wichoski (1987)

- quasar–galaxy alignments, Fagundes (1985) ADS:1985ApJ...291..450F;
- opposite QSO pairs: Demiański & Lapucha (1987); Fagundes & Wichoski (1987)
- type II pair collection: "cosmic crystallography"—Lehoucq, Lachièze-Rey, Luminet (1996) arXiv:gr-qc/9604050

- quasar–galaxy alignments, Fagundes (1985) ADS:1985ApJ...291..450F;
- opposite QSO pairs: Demiański & Lapucha (1987); Fagundes & Wichoski (1987)
- type II pair collection: "cosmic crystallography"—Lehoucq, Lachièze-Rey, Luminet (1996) arXiv:gr-qc/9604050
- type I pair or *n*-tuple collection: Roukema (1996) arXiv:astro-ph/9603052

- quasar–galaxy alignments, Fagundes (1985) ADS:1985ApJ...291..450F;
- opposite QSO pairs: Demiański & Lapucha (1987); Fagundes & Wichoski (1987)
- type II pair collection: "cosmic crystallography"—Lehoucq, Lachièze-Rey, Luminet (1996) arXiv:gr-qc/9604050
- type I pair or n-tuple collection: Roukema (1996) arXiv:astro-ph/9603052
- i "type I, type II" terminology: Lehoucq, Luminet, Uzan (1999) arXiv:astro-ph/9811107

- quasar–galaxy alignments, Fagundes (1985) ADS:1985ApJ...291..450F;
- opposite QSO pairs: Demiański & Lapucha (1987); Fagundes & Wichoski (1987)
- type II pair collection: "cosmic crystallography"—Lehoucq, Lachièze-Rey, Luminet (1996) arXiv:gr-qc/9604050
- type I pair or n-tuple collection: Roukema (1996) arXiv:astro-ph/9603052
- "type I, type II" terminology: Lehoucq, Luminet, Uzan (1999) arXiv:astro-ph/9811107
 - successive filters: Marecki, Roukema, Bajtlik (2005)

- quasar–galaxy alignments, Fagundes (1985) ADS:1985ApJ...291..450F;
- opposite QSO pairs: Demiański & Lapucha (1987); Fagundes & Wichoski (1987)
- type II pair collection: "cosmic crystallography"—Lehoucq, Lachièze-Rey, Luminet (1996) arXiv:gr-qc/9604050
- type I pair or n-tuple collection: Roukema (1996) arXiv:astro-ph/9603052
- "type I, type II" terminology: Lehoucq, Luminet, Uzan (1999) arXiv:astro-ph/9811107
- successive filters: Marecki, Roukema, Bajtlik (2005)
- quadruples + successive filters + collect membership s of quadruples
 Fujii & Yoshii (2013)

Type I pairs = local pairs or n-tuples

Type I pairs = local pairs or n-tuples

occur for any curvature

Type I pairs = local pairs or n-tuples

occur for any curvature

Type II pairs = fundamental length pairs

Type I pairs = local pairs or n-tuples

occur for any curvature

Type II pairs = fundamental length pairs

occur for some flat and spherical cases:

Type I pairs = local pairs or n-tuples

occur for any curvature

Type II pairs = fundamental length pairs

occur for some flat and spherical cases:

require a holonomy (mapping) $g: x \to g(x)$ for which

$$\forall x, y, \ d(x, g(x)) = d(y, g(y))$$

where d = comoving distance

Type I pairs = local pairs or n-tuples

occur for any curvature

Type II pairs = fundamental length pairs

occur for some flat and spherical cases:

require a holonomy (mapping) $g: x \to g(x)$ for which

 $\forall x, y, \ d(x, g(x)) = d(y, g(y))$

where d = comoving distancethis defines a: *Clifford translation*

Clifford translation examples: T^3 : yes;
3D strategies—pair types

Type I pairs = local pairs or n-tuples

occur for any curvature

Type II pairs = fundamental length pairs

occur for some flat and spherical cases:

require a holonomy (mapping) $g: x \to g(x)$ for which

 $\forall x, y, \ d(x, g(x)) = d(y, g(y))$

where d = comoving distancethis defines a: *Clifford translation*

Clifford translation examples: T^3 : yes; S^2 : rotations = no;

3D strategies—pair types

Type I pairs = local pairs or n-tuples

occur for any curvature

Type II pairs = fundamental length pairs

occur for some flat and spherical cases:

require a holonomy (mapping) $g: x \to g(x)$ for which

 $\forall x, y, \ d(x, g(x)) = d(y, g(y))$

where d = comoving distancethis defines a: *Clifford translation*

Clifford translation examples: T^3 : yes; S^2 : rotations = no; S^3 : pair of orthogonal rotations = possible

Marecki, Roukema, Bajtlik (2005) arXiv:astro-ph/0412181 method valid for T^3 :

Type II pairs +

Marecki, Roukema, Bajtlik (2005) arXiv:astro-ph/0412181 method valid for T^3 :

- Type II pairs +
- vectorial filter (\equiv require type I pairs) +

Marecki, Roukema, Bajtlik (2005) arXiv:astro-ph/0412181 method valid for T^3 :

- Type II pairs +
- vectorial filter (\equiv require type I pairs) +
 - δt filter—short QSO lifetimes +

Marecki, Roukema, Bajtlik (2005) arXiv:astro-ph/0412181 method valid for T^3 :

- Type II pairs +
- vectorial filter (\equiv require type I pairs) +
- δt filter—short QSO lifetimes +
- anti-selection effect filter

Marecki, Roukema, Bajtlik (2005) arXiv:astro-ph/0412181

Positions of objects on matched discs (weighted cleaned data)

Marecki et al. (2005) main results:

• AGN short lifetimes \Rightarrow redshift filter to improve S/N

Marecki et al. (2005) main results:

- AGN short lifetimes \Rightarrow redshift filter to improve S/N
- application to large AGN catalogue compilation revealed apparent signals

Marecki et al. (2005) main results:

- AGN short lifetimes \Rightarrow redshift filter to improve S/N
- application to large AGN catalogue compilation revealed apparent signals
- \bullet closer analysis \Rightarrow these are selection effects

Marecki et al. (2005) main results:

- AGN short lifetimes \Rightarrow redshift filter to improve S/N
- application to large AGN catalogue compilation revealed apparent signals
- \bullet closer analysis \Rightarrow these are selection effects
- no signal found in compilation of radio-loud AGNs (RLAGNs)

Fujii & Yoshii (2013) arXiv:1103.1466 method valid for compact flat spaces:

pairs of Type II pairs = quadruples +

- pairs of Type II pairs = quadruples +
- require type | pairs , i.e. require:

- pairs of Type II pairs = quadruples +
- require type I pairs , i.e. require:
 - translations (= vectorial filter), or

- pairs of Type II pairs = quadruples +
- require type I pairs , i.e. require:
 - translations (= vectorial filter), or
 - half-turn corkscrew motion and glide reflection, or

- pairs of Type II pairs = quadruples +
- require type I pairs , i.e. require:
 - translations (= vectorial filter), or
 - half-turn corkscrew motion and glide reflection, or
 - *n*-th-turn corkscrew motion, $n \in \{4, 3, 6\}$

- pairs of Type II pairs = quadruples +
- require type I pairs (2nd filter) +
 - δt filter—short QSO lifetimes +

- pairs of Type II pairs = quadruples +
- require type I pairs (2nd filter) +
- δt filter—short QSO lifetimes +
- collect *n*-tuples:

- pairs of Type II pairs = quadruples +
- require type I pairs (2nd filter) +
- δt filter—short QSO lifetimes +
- collect *n*-tuples:
 - $\bullet each i-th object \in s_i quadruples$

- pairs of Type II pairs = quadruples +
- require type I pairs (2nd filter) +
- δt filter—short QSO lifetimes +
- collect *n*-tuples:
- each *i*-th object $\in s_i$ quadruples
- \blacksquare plot histogram of frequency of s values

- pairs of Type II pairs = quadruples +
- require type I pairs (2nd filter) +
- δt filter—short QSO lifetimes +
- collect *n*-tuples:
- each *i*-th object $\in s_i$ quadruples
- \blacksquare plot histogram of frequency of s values

WMAP 5yr ILC (internal linear combination)

Cosmic inhomogeneity and topology II \bullet intuition $d(x, y) \mid \tilde{M}/\Gamma \mid \ddot{x} \mid$ obs 3D 2D \bullet

3D: structures bigger than FD cannot exist

discovery of principle: Cornish, Spergel & Starkman (1996)

- I discovery of principle: Cornish, Spergel & Starkman (1996)
- original article only as preprint: arXiv:gr-qc/9602039

- I discovery of principle: Cornish, Spergel & Starkman (1996)
- original article only as preprint: arXiv:gr-qc/9602039
- closed access peer-reviewed article: CQG, 15, 2657 (1998)

The Poincaré Dodecahedral 3-Manifold

FD = positively curved dodecahedron
The Poincaré Dodecahedral 3-Manifold

- FD = positively curved dodecahedron
- covering space is S^3

The Poincaré Dodecahedral 3-Manifold

- FD = positively curved dodecahedron
- covering space is S^3
- 120 copies of FD tile (exactly fill) S^3

The Poincaré Dodecahedral 3-Manifold

- FD = positively curved dodecahedron
- covering space is S^3
- 120 copies of FD tile (exactly fill) S^3
- Luminet et al. (2003): S^3/I^* favoured by WMAP statistics

extension to identified circles principle:

for a given manifold, e.g. S^3/I^* :

for a given manifold, e.g. S^3/I^* :

prediction: \exists solution $(l, b, \theta, \alpha, \phi = \pm 36^{\circ})$ where

- for a given manifold, e.g. S^3/I^* :
- I prediction: \exists solution $(l, b, \theta, \alpha, \phi = \pm 36^{\circ})$ where
- $\xi_{\rm C}(r \lesssim 4 \mathsf{h}^{-1} \text{ Gpc}) \sim \xi_{\rm A}(r \lesssim 4 \mathsf{h}^{-1} \text{ Gpc}) \text{ (cf } \underline{\xi_{\rm A}}(\mathsf{WMAP}))$

- for a given manifold, e.g. S^3/I^* :
- I prediction: \exists solution $(l, b, \theta, \alpha, \phi = \pm 36^{\circ})$ where
- $\xi_{\rm C}(r \lesssim 4 \mathsf{h}^{-1} \text{ Gpc}) \sim \xi_{\rm A}(r \lesssim 4 \mathsf{h}^{-1} \text{ Gpc}) \text{ (cf } \underline{\xi_{\rm A}}(\mathsf{WMAP}))$
 - search for best solution with Monte Carlo Markov Chain

- for a given manifold, e.g. S^3/I^* :
- prediction: \exists solution $(l, b, \theta, \alpha, \phi = \pm 36^{\circ})$ where
- $\xi_{\rm C}(r \lesssim 4 {\rm h}^{-1} {\rm Gpc}) \sim \xi_{\rm A}(r \lesssim 4 {\rm h}^{-1} {\rm Gpc}) \ ({\rm cf} \ \underline{\xi_{\rm A}}({\rm WMAP}))$
 - search for best solution with Monte Carlo Markov Chain
- allow arbitrary ϕ so that accidental correlations are likely to give an invalid value $\phi \neq \pm 36^\circ$

2021-07-29 - CIRM 2702.html

Cosmic inhomogeneity and topology II \bullet intuition $d(x,y) \mid \tilde{M}/\Gamma \mid \ddot{x} \mid$ obs 3D 2D \bullet

2021-07-29 - CIRM 2702.html

 ϕ vs matched circle size α

WMAP + Poincaré S^3/I^*

P_{\min}	n	$lpha^{\circ}$	$\sigma^{\circ}_{\langle lpha angle}$	ϕ°	$\sigma^{\circ}_{\langle \phi angle}$
0.4	12589.0	20.6	0.6	39.0	2.4
0.5	6537.5	20.8	0.7	38.7	2.2
0.6	2961.0	22.1	0.5	37.4	2.1

 \rightarrow favoured Poincaré dodecahedral space orientation/size, RBSG08 arXiv:0801.0006

 \rightarrow favoured Poincaré dodecahedral space orientation/size, RBSG08 arXiv:0801.0006

- \rightarrow favoured Poincaré dodecahedral space orientation/size, RBSG08 arXiv:0801.0006
- $\{(l,b)\}_{i=1,6} \approx \{(184^{\circ}, 62^{\circ}), (305^{\circ}, 44^{\circ}), (46^{\circ}, 49^{\circ}), (117^{\circ}, 20^{\circ}), (176^{\circ}, -4^{\circ}), (240^{\circ}, 13^{\circ})\} \ (\pm \approx 2^{\circ})$

- \rightarrow favoured Poincaré dodecahedral space orientation/size, RBSG08 arXiv:0801.0006
- $\{(l,b)\}_{i=1,6} \approx \{(184^{\circ}, 62^{\circ}), (305^{\circ}, 44^{\circ}), (46^{\circ}, 49^{\circ}), (117^{\circ}, 20^{\circ}), (176^{\circ}, -4^{\circ}), (240^{\circ}, 13^{\circ})\} \ (\pm \approx 2^{\circ})\}$
- matched discs method, RK11 arXiv:1106.0727: $2r_{inj} = 18.2 \pm 0.5 h^{-1} \text{ Gpc}$

- \rightarrow favoured Poincaré dodecahedral space orientation/size, RBSG08 arXiv:0801.0006
- $\{(l,b)\}_{i=1,6} \approx \{(184^{\circ}, 62^{\circ}), (305^{\circ}, 44^{\circ}), (46^{\circ}, 49^{\circ}), (117^{\circ}, 20^{\circ}), (176^{\circ}, -4^{\circ}), (240^{\circ}, 13^{\circ})\} \ (\pm \approx 2^{\circ})$
- matched discs method, RK11 arXiv:1106.0727: $2r_{inj} = 18.2 \pm 0.5 h^{-1} \text{ Gpc}$
- Planck (2013): (i) perturbation statististics assumption method; + (ii) identified circles: small correlation signal from S³/I* and other well-proportioned spaces, but consistent with noise

• topological acceleration method at $\sim 10h^{-1}$ Mpc likely to be very difficult to separate from artefacts:

- topological acceleration method at $\sim 10h^{-1}$ Mpc likely to be very difficult to separate from artefacts:
 - needs detailed GR modelling

- topological acceleration method at $\sim 10h^{-1}$ Mpc likely to be very difficult to separate from artefacts:
 - needs detailed GR modelling
 - needs excellent quality surveys

- topological acceleration method at $\sim 10h^{-1}$ Mpc likely to be very difficult to separate from artefacts:
 - needs detailed GR modelling
 - needs excellent quality surveys
 - numerical simulations Buliński 2015 PhD thesis
- 3D and 2D statistical methods at $1-10h^{-1}$ Gpc:

- topological acceleration method at $\sim 10h^{-1}$ Mpc likely to be very difficult to separate from artefacts:
 - needs detailed GR modelling
 - needs excellent quality surveys
 - numerical simulations Buliński 2015 PhD thesis
 - 3D and 2D statistical methods at $1-10h^{-1}$ Gpc:
 - searches for many 3-manifolds not yet done

- topological acceleration method at $\sim 10h^{-1}$ Mpc likely to be very difficult to separate from artefacts:
 - needs detailed GR modelling
 - needs excellent quality surveys
 - numerical simulations Buliński 2015 PhD thesis
 - 3D and 2D statistical methods at $1-10h^{-1}$ Gpc:
 - searches for many 3-manifolds not yet done
 - 2D (CMB) data: WMAP, Planck: no detections

- topological acceleration method at $\sim 10h^{-1}$ Mpc likely to be very difficult to separate from artefacts:
 - needs detailed GR modelling
 - needs excellent quality surveys
 - numerical simulations Buliński 2015 PhD thesis
 - 3D and 2D statistical methods at $1-10h^{-1}$ Gpc:
 - searches for many 3-manifolds not yet done
 - ◆ 2D (CMB) data: WMAP, Planck: no detections
 - much h⁻¹ Gpc scale 3D data: 4MOST, LSST, EUCLID, VLT/MUSE, ..., 2022–2030

- topological acceleration method at $\sim 10h^{-1}$ Mpc likely to be very difficult to separate from artefacts:
 - needs detailed GR modelling
 - needs excellent quality surveys
 - numerical simulations Buliński 2015 PhD thesis
 - 3D and 2D statistical methods at $1-10h^{-1}$ Gpc:
 - searches for many 3-manifolds not yet done
 - ◆ 2D (CMB) data: WMAP, Planck: no detections
 - much h⁻¹ Gpc scale 3D data: 4MOST, LSST, EUCLID, VLT/MUSE, ..., 2022–2030

cosmic topology with inhomogeneities: very much unexplored ...