
Maneage: a proof-of-concept for rigorous reproducible research paper criteria

Boud Roukema

Institute of Astronomy, Nicolaus Copernicus University

11 March 2024 @IA NCU

Slides’ main authors: Akhlaghi + Roukema; pdf built from git commit ba08d20;
this pdf: https://cosmo.torun.pl/∼boud/Roukema20240311IANCU.pdf

https://cosmo.torun.pl/~boud
https://astro.umk.pl
https://codeberg.org/boud/maneage-slides
https://cosmo.torun.pl/~boud/Roukema20240311IANCU.pdf

Reproducibility crisis in scientific research: astronomy

Snakes on a Spaceship – An Overview of Python in Heliophysics

“...inadequate analysis descriptions and loss of scientific data have made scientific studies difficult or
impossible to replicate”. From Burrell+2018, (arXiv:1901.00143).

Perspectives on Reproducibility and Sustainability of Open-Source Scientific Software

“It is our interest that NASA adopt an open-code policy because without it, reproducibility in
computational science is needlessly hampered”. From Oishi+2018, (arXiv:1801.08200).

Schrödinger’s code: source code availability and link persistence in astrophysics

“We were unable to find source code online ... for 40.4% of the codes used in the research we
looked at”. From Allen+2018, (arXiv:1801.02094).

https://arxiv.org/abs/1901.00143
https://arxiv.org/abs/1801.08200
https://arxiv.org/abs/1801.02094

and in biology, other sciences, economics

Repeatability of published microarray gene expression analyses

Ioannidis+2009 tried to repeat the data analyses in 18 articles in Nature Genetics and only were able to
(almost) reproduce only 2 DOI:10.1038/ng.295.

Is Economics Research Reproducible? 60 papers from Thirteen Journals Say “Usually Not”

Chang & Li (2015) were are able to reproduce just under half of 67 papers in prestigious journals, with
help from the authors. DOI:10.17016/FEDS.2015.083

An empirical analysis of journal policy effectiveness for computational reproducibility

Stodden+2018 studied a random sample of 204 scientific papers in Science and were able to obtain data
or code from 44% and reproduce the findings for 26%. DOI:10.1073/pnas.1708290115

“Reproducibility crisis” in the sciences?

Baker 2016, Nature 533, 452: 70% of researchers couldn’t reproduce another scientist’s results; half
couldn’t reproduce their own. nature.com/articles/533452a

https://doi.org/10.1038/ng.295
http://dx.doi.org/10.17016/FEDS.2015.083
http://dx.doi.org/10.1073/pnas.1708290115
https://www.nature.com/articles/533452a

Definitions & Clarification per US National Academies report, 2019, DOI:10.17226/25303; (pdf)

Replicability (hardware/statistical)

▶ Similar data, similar method.

▶ Involves data collection.

▶ Inherently includes measurement errors
(can never be exactly reproduced).

▶ Example: Raw telescope image/spectra.

▶ NOT DISCUSSED HERE.

(C) CC BY-SA 2006, R. Feiler

Reproducibility (software/deterministic)

▶ Same data, same method.

▶ May include simulations of data.

▶ Involves data analysis,

▶ Example: 2 + 2 = 4 (i.e., sum of datasets).

▶ DISCUSSED HERE.

(C) 2008 J. Zawinski

http://doi.org/10.17226/25303
https://nap.nationalacademies.org/resource/25303/R&R%20for%20SBS3.pdf
https://commons.wikimedia.org/wiki/File:Torun32m_winter.jpg
https://commons.wikimedia.org/wiki/File:The.Matrix.glmatrix.2.png

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Different package managers have different versions of software (repology.org, 2021/12/02)

Astropy
Packaging statusPackaging status

Debian 10Debian 10 3.1.23.1.2

Debian 11Debian 11 4.24.2

Debian 12Debian 12 4.3.14.3.1

Debian UnstableDebian Unstable 5.05.0

Debian ExperimentalDebian Experimental 5.0~rc25.0~rc2

DeepinDeepin 3.1.23.1.2

Devuan 3.0Devuan 3.0 3.1.23.1.2

Devuan 4.0Devuan 4.0 4.24.2

Devuan UnstableDevuan Unstable 5.05.0

Kali Linux RollingKali Linux Rolling 4.3.14.3.1

Pardus 19Pardus 19 3.1.23.1.2

Pardus 21Pardus 21 4.24.2

ParrotParrot 4.24.2

PureOS AmberPureOS Amber 3.1.23.1.2

PureOS landingPureOS landing 4.24.2

Raspbian OldstableRaspbian Oldstable 3.1.23.1.2

Raspbian StableRaspbian Stable 4.24.2

Raspbian TestingRaspbian Testing 4.3.14.3.1

Trisquel 9.0Trisquel 9.0 3.03.0

Trisquel 10.0Trisquel 10.0 4.04.0

Ubuntu 18.04Ubuntu 18.04 3.03.0

Ubuntu 20.04Ubuntu 20.04 4.04.0

Ubuntu 20.10Ubuntu 20.10 4.0.1+post14.0.1+post1

Ubuntu 21.04Ubuntu 21.04 4.24.2

Ubuntu 21.10Ubuntu 21.10 4.24.2

Ubuntu 22.04Ubuntu 22.04 4.24.2

Ubuntu 22.04 ProposedUbuntu 22.04 Proposed 4.3.14.3.1

GNU Astronomy Utilities (Gnuastro)
Packaging statusPackaging status

Debian 9Debian 9 0.2.330.2.33

Debian 10Debian 10 0.80.8

Debian 11Debian 11 0.140.14

Debian 12Debian 12 0.16.10.16.1

Debian UnstableDebian Unstable 0.16.10.16.1

DeepinDeepin 0.80.8

Devuan 2.0Devuan 2.0 0.2.330.2.33

Devuan 3.0Devuan 3.0 0.80.8

Devuan 4.0Devuan 4.0 0.140.14

Devuan UnstableDevuan Unstable 0.16.10.16.1

DPortsDPorts 0.150.15

FreeBSD PortsFreeBSD Ports 0.160.16

Funtoo 1.4Funtoo 1.4 0.30.3

GentooGentoo 0.30.3

GNU GuixGNU Guix 0.160.16

Kali Linux RollingKali Linux Rolling 0.16.10.16.1

LiGurOS stableLiGurOS stable 0.30.3

LiGurOS developLiGurOS develop 0.30.3

OpenBSD PortsOpenBSD Ports 0.150.15

openSUSE Leap 15.1openSUSE Leap 15.1 0.80.8

openSUSE Leap 15.2openSUSE Leap 15.2 0.80.8

openSUSE Leap 15.3openSUSE Leap 15.3 0.80.8

openSUSE TumbleweedopenSUSE Tumbleweed 0.160.16

openSUSE Science TumbleweedopenSUSE Science Tumbleweed 0.160.16

Pardus 17Pardus 17 0.2.330.2.33

Pardus 19Pardus 19 0.80.8

Pardus 21Pardus 21 0.140.14

ParrotParrot 0.140.14

PLD LinuxPLD Linux 0.150.15

PureOS AmberPureOS Amber 0.80.8

PureOS landingPureOS landing 0.140.14

Raspbian OldstableRaspbian Oldstable 0.80.8

Raspbian StableRaspbian Stable 0.140.14

Raspbian TestingRaspbian Testing 0.16.10.16.1

RPM SphereRPM Sphere 0.16.10.16.1

Trisquel 9.0Trisquel 9.0 0.50.5

Trisquel 10.0Trisquel 10.0 0.110.11

Ubuntu 18.04Ubuntu 18.04 0.50.5

Ubuntu 20.04Ubuntu 20.04 0.110.11

Ubuntu 20.10Ubuntu 20.10 0.120.12

Ubuntu 21.04Ubuntu 21.04 0.140.14

Ubuntu 21.10Ubuntu 21.10 0.140.14

Ubuntu 22.04Ubuntu 22.04 0.140.14

Ubuntu 22.04 ProposedUbuntu 22.04 Proposed 0.16.10.16.1

Packaging statusPackaging status

Debian 9Debian 9 0.2.330.2.33

Debian 10Debian 10 0.80.8

Debian 11Debian 11 0.140.14

Debian 12Debian 12 0.16.10.16.1

Debian UnstableDebian Unstable 0.16.10.16.1

DeepinDeepin 0.80.8

Devuan 2.0Devuan 2.0 0.2.330.2.33

Devuan 3.0Devuan 3.0 0.80.8

Devuan 4.0Devuan 4.0 0.140.14

Devuan UnstableDevuan Unstable 0.16.10.16.1

DPortsDPorts 0.150.15

FreeBSD PortsFreeBSD Ports 0.160.16

Funtoo 1.4Funtoo 1.4 0.30.3

GentooGentoo 0.30.3

GNU GuixGNU Guix 0.160.16

Kali Linux RollingKali Linux Rolling 0.16.10.16.1

LiGurOS stableLiGurOS stable 0.30.3

LiGurOS developLiGurOS develop 0.30.3

OpenBSD PortsOpenBSD Ports 0.150.15

openSUSE Leap 15.1openSUSE Leap 15.1 0.80.8

openSUSE Leap 15.2openSUSE Leap 15.2 0.80.8

openSUSE Leap 15.3openSUSE Leap 15.3 0.80.8

openSUSE TumbleweedopenSUSE Tumbleweed 0.160.16

openSUSE Science TumbleweedopenSUSE Science Tumbleweed 0.160.16

Pardus 17Pardus 17 0.2.330.2.33

Pardus 19Pardus 19 0.80.8

Pardus 21Pardus 21 0.140.14

ParrotParrot 0.140.14

PLD LinuxPLD Linux 0.150.15

PureOS AmberPureOS Amber 0.80.8

PureOS landingPureOS landing 0.140.14

Raspbian OldstableRaspbian Oldstable 0.80.8

Raspbian StableRaspbian Stable 0.140.14

Raspbian TestingRaspbian Testing 0.16.10.16.1

RPM SphereRPM Sphere 0.16.10.16.1

Trisquel 9.0Trisquel 9.0 0.50.5

Trisquel 10.0Trisquel 10.0 0.110.11

Ubuntu 18.04Ubuntu 18.04 0.50.5

Ubuntu 20.04Ubuntu 20.04 0.110.11

Ubuntu 20.10Ubuntu 20.10 0.120.12

Ubuntu 21.04Ubuntu 21.04 0.140.14

Ubuntu 21.10Ubuntu 21.10 0.140.14

Ubuntu 22.04Ubuntu 22.04 0.140.14

Ubuntu 22.04 ProposedUbuntu 22.04 Proposed 0.16.10.16.1

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Example: Matplotlib (a Python visualization library) build dependencies

From “Attributing and Referencing (Research) Software: Best Practices and Outlook from Inria” (Alliez et al. 2020, CiSE, DOI:10.1109/MCSE.2019.2949413).

https://doi.org/10.1109/MCSE.2019.2949413

Impact of “Dependency hell” on native building in various hardware (CPU architectures),
retrieved from Debian on 2021/12/02

Astropy depends on Matplotlib GNU Astronomy Utilities doesn’t.

General outline of a project (after data collection)
Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)
Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)
Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)
Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)
Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)
Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)
Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)
Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)
Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)
Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)
Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)
Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)
Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Di Cosmo & Pellegrini (2019) Encouraging a wider usage of software derived from research

“Software is a hybrid object in the world [of] research as it is equally a driving force (as a
tool), a result (as proof of the existence of a solution) and an object of study (as an artefact)”.

https://inserm.hal.science/INRIA/hal-02545142v1

General outline of a project (after data collection)
Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Criteria for a solution

▶ 1. Completeness (self-contained-ness):
▶ (1) Only dependency should be POSIX tools (discards Conda or Jupyter which need Python).
▶ (2) Plain text: Project’s source should be in plain-text (binary formats need special software)
▶ (3) No impact on host OS libraries, programs, env variables.
▶ (4) Must not require root permissions (discards tools like Docker or Nix/Guix).
▶ (5) Builds its own controlled software + env variables.
▶ (6) Should be usable without an internet connection.
▶ (7) Contains full instructions for inputs, software building, and outputs: analysis + narrative +

graphical output (e.g. pdf or html)
▶ (8) Should be non-interactive or runnable in batch (user interaction is an incompleteness).

▶ 2. Modularity: Parts of the project should be re-usable in other projects.

▶ 3. Minimal complexity: Occam’s razor: “Never posit pluralities without necessity”.
▶ Avoiding the fashionable tool of the day: tomorrow another tool will take its place!
▶ Easier learning curve, also doesn’t create a generational gap.
▶ Is compatible and extensible.

▶ 4. Scalability: an implementation should easily scale to arbitrarily large, complex projects.

Criteria for a solution

▶ 5. Verifiable inputs and outputs: Inputs and Outputs must be automatically verified.

▶ 6. Recorded history: Exploratory research involves modifying methods, reducing over-ambitious
goals, serendipity; hypothesis testing should have a fixed, predefined method — did the authors
modify the method? how? what? which? when?

▶ 7. Including the narrative that is associated with the analysis: a workflow alone lacks
motivations, interpretations.

▶ 8. Free and open source software (FOSS): Free software is essential: non-free software is not
configurable, not distributable, and is dependent on a non-free provider (who may discontinue it
after e.g. 5–10 years).

Reminder: Free Software Definition:

freedom to:
0: use 1: modify
2: distribute 3: distribute modified versions

https://en.wikipedia.org/wiki/Free_Software_Definition

Our solution: CiSE 23 (3), pp 82-91: DOI:10.1109/MCSE.2021.3072860, arXiv:2006.03018

https://maneage.org

https://doi.org/10.1109/MCSE.2021.3072860
https://arxiv.org/abs/2006.03018

Predefined/exact software tools

Reproducibility & software

Reproducing the environment (specific software versions, build instructions and
dependencies) is also critically important for reproducibility.

▶ Containers or Virtual Machines are a binary black box.

▶ Maneage installs fixed versions of all necessary research software
and its dependencies.

▶ Installs similar environment on GNU/Linux, or Darwin/Xnu
(macOS, iOS) systems.

▶ Works very much like a package manager (e.g., apt or brew).

Controlled environment and build instructions

Controlled environment and build instructions

Example: Matplotlib (a Python visualization library) build dependencies

From “Attributing and Referencing (Research) Software: Best Practices and Outlook from Inria” (Alliez et al. 2019, hal-02135891)

https://hal.archives-ouvertes.fr/hal-02135891

All high-level dependencies are under control (e.g., NoiseChisel’s dependencies)

GNU/Linux distribution

$ ldd .local/bin/astnoisechisel

libgnuastro.so.7 => /PROJECT/libgnuastro.so.7 (0x00007f6745f39000)

libgit2.so.26 => /PROJECT/libgit2.so.26 (0x00007f6745df1000)

libtiff.so.5 => /PROJECT/libtiff.so.5 (0x00007f6745d77000)

liblzma.so.5 => /PROJECT/liblzma.so.5 (0x00007f6745d4f000)

libjpeg.so.9 => /PROJECT/libjpeg.so.9 (0x00007f6745d12000)

libwcs.so.6 => /PROJECT/libwcs.so.6 (0x00007f6745ba8000)

libcfitsio.so.8 => /PROJECT/libcfitsio.so.8 (0x00007f674588b000)

libcurl.so.4 => /PROJECT/libcurl.so.4 (0x00007f6745811000)

libssl.so.1.1 => /PROJECT/libssl.so.1.1 (0x00007f6745777000)

libcrypto.so.1.1 => /PROJECT/libcrypto.so.1.1 (0x00007f6745491000)

libz.so.1 => /PROJECT/libz.so.1 (0x00007f6745474000)

libgsl.so.23 => /PROJECT/libgsl.so.23 (0x00007f67451e3000)

libgslcblas.so.0 => /PROJECT/libgslcblas.so.0 (0x00007f67451a1000)

linux-vdso.so.1 (0x00007fffdcbf7000)

libpthread.so.0 => /usr/lib/libpthread.so.0 (0x00007f6745006000)

libm.so.6 => /usr/lib/libm.so.6 (0x00007f6745027000)

libc.so.6 => /usr/lib/libc.so.6 (0x00007f6744e43000)

libdl.so.2 => /usr/lib/libdl.so.2 (0x00007f6744e1e000)

/lib64/ld-linux-x86-64.so.2 => /usr/lib64/ld-linux-x86-64.so.2

Darwin/Xnu

$ otool -L .local/bin/astnoisechisel

/PROJECT/libgnuastro.7.dylib (comp ver 8.0.0, cur ver 8.0.0)

/PROJECT/libgit2.26.dylib (comp ver 26.0.0, cur ver 0.26.0)

/PROJECT/libtiff.5.dylib (comp ver 10.0.0, cur ver 10.0.0)

/PROJECT/liblzma.5.dylib (comp ver 8.0.0, cur ver 8.4.0)

/PROJECT/libjpeg.9.dylib (comp ver 12.0.0, cur ver 12.0.0)

/PROJECT/libwcs.6.2.dylib (comp ver 6.0.0, cur ver 6.2.0)

/PROJECT/libcfitsio.8.dylib (comp ver 8.0.0, cur ver 8.3.47)

/PROJECT/libcurl.4.dylib (comp ver 10.0.0, cur ver 10.0.0)

/PROJECT/libssl.1.1.dylib (comp ver 1.1.0, cur ver 1.1.0)

/PROJECT/libcrypto.1.1.dylib (comp ver 1.1.0, cur ver 1.1.0)

/PROJECT/libz.1.dylib (comp ver 1.0.0, cur ver 1.2.11)

/PROJECT/libgsl.23.dylib (comp ver 25.0.0, cur ver 25.0.0)

/PROJECT/libgslcblas.0.dylib (comp ver 1.0.0, cur ver 1.0.0)

/usr/lib/libSystem.B.dylib (comp ver 1.0.0, cur ver 1252.50.4)

Project libraries: High-level libraries built from source for each project (note the same version in both OSs).
GNU C Library: Project specific build is in progress (http://savannah.nongnu.org/task/?15390).
Closed operating system files: We have no control on low-level non-free operating systems components.

http://savannah.nongnu.org/task/?15390

Advantages of this build system

▶ Project runs in fixed/controlled environment: custom build of bash, make,
GNU Coreutils (ls, cp, mkdir and etc), awk, or sed, LATEX, etc.

▶ No need for root/administrator permissions (on servers or super computers).

▶ Whole system is built automatically on any Unix-like operating system
(∼ 2–3 hours; Sep 2022).

▶ Dependencies of different projects will not conflict.

▶ Everything in plain text (human & computer readable/archivable).

Software citation automatically generated in paper

Software citation automatically generated in paper

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Input data source and integrity is documented and checked

Stored information about each input file:

▶ PID (Persistent IDentifier if available)

▶ Download URL (if available).

▶ checksum (e.g. md5sum, sha512sum) to check integrity (calculate with
standard tools)

All inputs are downloaded using the given PID/URL when necessary
(during the analysis).

Checksums are checked to make sure the download was done properly or the file
is the same (hasn’t changed on the server/source).

Example from the reproducible paper arXiv:1909.11230.
This paper needs three input files (two images, one catalog).

https://projects.tib.eu/pid-service/en/persistent-identifiers/persistent-identifiers-pids
https://arxiv.org/abs/1909.11230

Input data source and integrity is documented and checked

Stored information about each input file:

▶ PID (Persistent IDentifier if available)

▶ Download URL (if available).

▶ checksum (e.g. md5sum, sha512sum) to check integrity (calculate with
standard tools)

All inputs are downloaded using the given PID/URL when necessary
(during the analysis).

Checksums are checked to make sure the download was done properly or the file
is the same (hasn’t changed on the server/source).

Example from the reproducible paper arXiv:1909.11230.
This paper needs three input files (two images, one catalog).

https://projects.tib.eu/pid-service/en/persistent-identifiers/persistent-identifiers-pids
https://arxiv.org/abs/1909.11230

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Reproducible science: Maneage is managed through a Makefile

All steps (downloading and analysis) are managed by Makefiles
(example from zenodo.1164774):

▶ Unlike a script which always starts from the top, a Makefile starts from the
end and steps that don’t change will be left untouched (not remade).

▶ A single rule can manage any number of files.

▶ Make can identify independent steps internally and do them in parallel.

▶ Make was designed for complex projects with thousands of files (all major
Unix-like components), so it is highly evolved and efficient.

▶ Make is a very simple and small language, thus easy to learn with
well-checked, free-licensed documentation (for example GNU Make’s
manual).

https://doi.org/10.5281/zenodo.1164774
https://www.gnu.org/software/make/manual/
https://www.gnu.org/software/make/manual/

Reproducible science: Maneage is managed through a Makefile

All steps (downloading and analysis) are managed by Makefiles
(example from zenodo.1164774):

▶ Unlike a script which always starts from the top, a Makefile starts from the
end and steps that don’t change will be left untouched (not remade).

▶ A single rule can manage any number of files.

▶ Make can identify independent steps internally and do them in parallel.

▶ Make was designed for complex projects with thousands of files (all major
Unix-like components), so it is highly evolved and efficient.

▶ Make is a very simple and small language, thus easy to learn with
well-checked, free-licensed documentation (for example GNU Make’s
manual).

https://doi.org/10.5281/zenodo.1164774
https://www.gnu.org/software/make/manual/
https://www.gnu.org/software/make/manual/

Reproducible science: Maneage is managed through a Makefile

All steps (downloading and analysis) are managed by Makefiles
(example from zenodo.1164774):

▶ Unlike a script which always starts from the top, a Makefile starts from the
end and steps that don’t change will be left untouched (not remade).

▶ A single rule can manage any number of files.

▶ Make can identify independent steps internally and do them in parallel.

▶ Make was designed for complex projects with thousands of files (all major
Unix-like components), so it is highly evolved and efficient.

▶ Make is a very simple and small language, thus easy to learn with
well-checked, free-licensed documentation (for example GNU Make’s
manual).

https://doi.org/10.5281/zenodo.1164774
https://www.gnu.org/software/make/manual/
https://www.gnu.org/software/make/manual/

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Values in final report/paper

All analysis results (numbers, plots, tables) written in paper’s PDF as LATEX macros. They are thus
updated automatically on any change.
Here is a portion of the Borkowska & Roukema (2022) abstract and its LATEX source (arXiv:2112.14174).

https://arxiv.org/abs/2112.14174

Values in final report/paper

All analysis results (numbers, plots, tables) written in paper’s PDF as LATEX macros. They are thus
updated automatically on any change.
Here is a portion of the Borkowska & Roukema (2022) abstract and its LATEX source (arXiv:2112.14174).

https://arxiv.org/abs/2112.14174

Analysis step results/values stored in a single build directory.
All LATEX macros are output in a single directory.

Analysis step results/values stored in a single build directory.
All LATEX macros are output in a single directory.

Analysis results stored as LATEX macros

The analysis scripts write/update the LATEX macro values automatically.

Analysis results stored as LATEX macros

The analysis scripts write/update the LATEX macro values automatically.

Makefiles (.mk) keep contextually separate parts of the project, all imported into top-make.mk

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

The ultimate purpose of the project is to produce a paper/report (in PDF).

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

The narrative description, typography and references are in paper.tex & references.tex.

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex
Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

Analysis outputs (blended into the PDF as LATEX macros) come from project.tex.

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.tex

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

But analysis outputs must first be verified (with checksums) before entering the report/paper.

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

Basic project info comes from initialize.tex.

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

The paper includes some information about the plot.

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

demo-plot.tex

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

The final plotted data are calculated and stored in tools-per-year.txt.

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

demo-plot.tex

tools-per-
year.txt

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

The plot’s calculation is done on a formatted sub-set of the raw input data.

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

demo-plot.tex

tools-per-
year.txt

table-3.txt

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

The raw data that were downloaded are stored in XLSX format.

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

demo-plot.tex

tools-per-
year.txt

table-3.txt

menke20.xlsx

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

The download URL and a checksum to validate the raw inputs, are stored in INPUTS.conf.

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

demo-plot.tex

tools-per-
year.txt

table-3.txt

menke20.xlsx

INPUTS.conf

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

We also need to report the URL in the paper...

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

demo-plot.tex

tools-per-
year.txt

table-3.txt

menke20.xlsx

INPUTS.conf

download.tex

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

Some general info about the full dataset may also be reported.

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

demo-plot.tex

tools-per-
year.txt

table-3.txt

menke20.xlsx

INPUTS.conf

download.tex format.tex

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

We report the number of papers studied in a special year, desired year is stored in .conf file.

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

demo-plot.tex

tools-per-
year.txt

table-3.txt

menke20.xlsx

INPUTS.conf

download.tex format.tex

demo-year.conf

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

It is very easy to expand the project and add new analysis steps (this solution is scalable)

top-make.mk

initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

demo-plot.tex

tools-per-
year.txt

table-3.txt

menke20.xlsx

INPUTS.conf

download.tex format.tex

demo-year.conf

next-step.mk

next-step.tex

out-a.dat

out-b.dat

demo-out.dat

param.conf

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

The whole project is a directed graph (codifying the data’s lineage).

▶ Every file (source or built) is a node in the graph (connected to others).
(The links/connections/dependencies between the nodes, defined by the Makefiles: *.mk)

▶ There are two types of nodes/files:
▶ Source nodes (*.conf and paper.tex) only have an outward link.

▶ Built files always have inward and (except paper.pdf) outward link(s).

▶ All built files ultimately originate from a *.conf file,
... and ultimately conclude in paper.pdf.

Benefits of using Make

▶ Make can parallelize the analysis:
Make knows which steps are indepenent and will run them at the same time.

▶ Make can automatically detect a change and will re-do only the affected steps.
(for example to change the multiple of sigma in a configuration file to see its effect)

▶ Easily backtrace any step (without needing to remember!).
(very useful to find problems/improvements)

▶ The above will speed up your work, and encourage experimentation on methods.

▶ Make is available on any system: many people are already familiar with it.

▶ And again: its all in plain text!
(doesn’t take much space, easy to read, distribute, parse automatically, or archive)

▶ Recall that the project’s software installation was also managed in Make.

Files organized in directories by context (here are some of the files discussed before)
project/

paper.tex

reproduce/

software/

config/

versions.conf

make/

high-level.mk

shell/ bibtex/

analysis/

config/

INPUTS.conf

param-1.conf

param-2a.conf

param-2b.conf

make/
top-prepare.mk

top-make.mk

initialize.mk

analysis1.mk

bash/ python/

tex/

src/
references.tex

Files organized in directories by context (now with other project files and symbolic links)
project/

COPYING paper.tex project README.md README-hacking.md

reproduce/

software/

config/

LOCAL.conf.in

versions.conf

checksums.conf

make/
basic.mk

high-level.mk

python.mk

shell/
configure.sh

bashrc.sh

bibtex/
fftw.tex

numpy.tex

gnuastro.tex

analysis/

config/

INPUTS.conf

param-1.conf

param-2a.conf

param-2b.conf

make/
top-prepare.mk

top-make.mk

initialize.mk

analysis1.mk

bash/
process-A.sh

python/

operation-B.py

fitting-plot.py

tex/

src/
references.tex

figure-1.tex

build/

Symbolic link to
LATEX build directory.

tikz/

Symbolic link to TikZ
directory (figures built
by LATEX).

.local/
Symbolic link to project’s software environment, e.g.,
Python or R, run ‘.local/bin/python’ or ‘.local/bin/R’

.build/
Symbolic link to project’s top-level build directory.
Enabling easy access to all of project’s built components.

.git/
Full project temporal provenance (version controlled history) in Git.

All questions have an answer now (in plain text: human & computer readable/archivable).

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

All questions have an answer now (in plain text: so we can use Git to keep its history).

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

New projects branch from Maneage

Today

▶ The project (answers to questions above) will evolve.

New projects branch from Maneage

Today

Tomorrow

▶ The project (answers to questions above) will evolve.

New projects branch from Maneage

Maneage

ad2c476

706c644

▶ Each point of project’s history is recorded with Git.

New projects branch from Maneage

Maneage

ad2c476

706c644 Project

53b53d6

▶ Each point of project’s history is recorded with Git.

▶ New project: a branch from the template.
Every commit contains the following:
▶ Instructions to download, verify and build software.
▶ Instructions to download and verify input data.
▶ Instructions to run software on data (do the analysis).
▶ Narrative description of project’s purpose/context.

New projects branch from Maneage

Maneage

ad2c476

706c644 Project

53b53d6

9f8cc74

8ebb784

▶ Each point of project’s history is recorded with Git.

▶ New project: a branch from the template.
Every commit contains the following:
▶ Instructions to download, verify and build software.
▶ Instructions to download and verify input data.
▶ Instructions to run software on data (do the analysis).
▶ Narrative description of project’s purpose/context.

▶ Research progresses in the project branch.

New projects branch from Maneage

Maneage

ad2c476

706c644

fa2ac10

1e06fe2

32043ee

Project

53b53d6

9f8cc74

8ebb784

▶ Each point of project’s history is recorded with Git.

▶ New project: a branch from the template.
Every commit contains the following:
▶ Instructions to download, verify and build software.
▶ Instructions to download and verify input data.
▶ Instructions to run software on data (do the analysis).
▶ Narrative description of project’s purpose/context.

▶ Research progresses in the project branch.

▶ Template will evolve (improved infrastructure).

New projects branch from Maneage

Maneage

ad2c476

706c644

fa2ac10

1e06fe2

32043ee

Project

53b53d6

9f8cc74

8ebb784

01ce2cc

▶ Each point of project’s history is recorded with Git.

▶ New project: a branch from the template.
Every commit contains the following:
▶ Instructions to download, verify and build software.
▶ Instructions to download and verify input data.
▶ Instructions to run software on data (do the analysis).
▶ Narrative description of project’s purpose/context.

▶ Research progresses in the project branch.

▶ Template will evolve (improved infrastructure).

▶ Template can be imported/merged back into project.

New projects branch from Maneage

Maneage

ad2c476

706c644

fa2ac10

1e06fe2

32043ee

2d808f2

a4d96c0

Project

53b53d6

9f8cc74

8ebb784

01ce2cc

b52cc6f

▶ Each point of project’s history is recorded with Git.

▶ New project: a branch from the template.
Every commit contains the following:
▶ Instructions to download, verify and build software.
▶ Instructions to download and verify input data.
▶ Instructions to run software on data (do the analysis).
▶ Narrative description of project’s purpose/context.

▶ Research progresses in the project branch.

▶ Template will evolve (improved infrastructure).

▶ Template can be imported/merged back into project.

▶ The template and project will evolve.

▶ During research this encourages creative tests
(previous research states can easily be retrieved).

▶ Coauthors can work on same project in parallel
(separate project branches).

New projects branch from Maneage

Maneage

ad2c476

706c644

fa2ac10

1e06fe2

32043ee

2d808f2

a4d96c0

Project

53b53d6

9f8cc74

8ebb784

01ce2cc

b52cc6f

b52
cc6

f

▶ Each point of project’s history is recorded with Git.

▶ New project: a branch from the template.
Every commit contains the following:
▶ Instructions to download, verify and build software.
▶ Instructions to download and verify input data.
▶ Instructions to run software on data (do the analysis).
▶ Narrative description of project’s purpose/context.

▶ Research progresses in the project branch.

▶ Template will evolve (improved infrastructure).

▶ Template can be imported/merged back into project.

▶ The template and project will evolve.

▶ During research this encourages creative tests
(previous research states can easily be retrieved).

▶ Coauthors can work on same project in parallel
(separate project branches).

▶ Upon publication, the Git commit ID identifies the
peer-reviewed version of record (apart from journal
typesetting, proofreading corrections).

Any Git-based workflow is possible.

Maneage

Project
1d72e26

0c120cb

5781173

0774aac

3c05235

6ec4881

852d996

4483a81

5e830f5

01dd812

2ed0c82

f62596e

f69e1f4

716b56b

(a) pre-publication:
Collaborating on a project while
working in parallel, then merging.

Maneage

Project

Derived
project

1d72e26

0c120cb

b47b2a3

340a7ec

a92b25a

6e1e3ff

4483a81

55d6570

b177c7e

5ae1fdc

bcf4512

(b) post-publication:
Other researchers building upon
previously published work.

Publication of the project
A reproducible project using Maneage will have the following (plain text) components:

▶ Makefiles.

▶ LATEX source files.

▶ Configuration files for software used in analysis.

▶ Scripts/programming files (e.g., Python, Shell, AWK, C).

The volume of the project’s source will thus be tiny: <∼ 1 Mb.
Borkowska & Roukema (2022) 550 kb + Peper, Roukema & Bolejko (2023) 740 kb would fit on a
floppy disk

The project’s pipeline (customized Maneage) can be published in

▶ arXiv: uploaded with the LATEX source to always stay with the paper
(for example arXiv:2112.14174).

▶ Zenodo: Along with all the input datasets (many gigabytes) and software
(for example zenodo.6794222) and given a unique DOI.
▶ ... and put links to data in paper! See the caption of Fig. 3 in Borkowska & Roukema (2022).

▶ Software Heritage: to archive the full version-controlled history of the project.
(for example swh:1:dir:33fea87068c1612daf011f161b97787b9a0df39fk)
▶ ... and put links to exact parts of the code! See caption of Listing 1 in the Maneage paper.

https://zenodo.org/records/6794222/files/gevcurvtest-cc5ca58-snapshot.tar.gz
https://zenodo.org/records/8103985/files/lensing-ddbb4ac-snapshot.tar.gz
https://arxiv.org/abs/2112.14174
https://doi.org/10.5281/zenodo.6794222
https://doi.org/10.1088/1361-6382/ac8ddb
https://archive.softwareheritage.org/swh:1:dir:33fea87068c1612daf011f161b97787b9a0df39f;origin=http://git.maneage.org/paper-concept.git/;visit=swh:1:snp:89af43c4b076a17d9298299f224247038af355ea;anchor=swh:1:rev:313db0b04bd3499f83d9e79fd7e92578cd367c2b
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9403875

Project source and its execution

Programs [here: Scientific projects] must be written for people to read...
...and only incidentally for machines to execute.

Harold Abelson, Structure and Interpretation of Computer Programs

General outline of using this system (e.g. arXiv:2112.14174)

$ git clone https://codeberg.org/boud/gevcurvtest # Import the project.

$ cd gevcurvtest # Enter the directory.

$./project --help # RTFM. Skip if brave enough.

$./project configure # You will specify the build directory on your system,

and it will build all software (∼2-3 hours on 4 cores).

$./project make # Does all the analysis and makes final PDF.

https://arxiv.org/abs/2112.14174

Practical experience: peer-reviewed cosmology papers

▶ Peper & Roukema (2021), MNRAS, 505, 1223, “The role of the elaphrocentre in void galaxy
formation”
▶ https://arXiv.org/abs/2010.03742
▶ frozen record: https://zenodo.org/record/4699702
▶ live git: https://codeberg.org/boud/elaphrocentre
▶ archived git: swh:1:rev:a029edd32d5cd41dbdac145189d9b1a08421114e

▶ Borkowska & Roukema (2022) CQG, 39, 215007 “Does relativistic cosmology software handle
emergent volume evolution?”
▶ https://arXiv.org/abs/2112.14174
▶ frozen record: https://zenodo.org/record/5806027
▶ live git: https://codeberg.org/boud/gevcurvtest
▶ archived git swh:1:rev:d9b47736f81aff9bb8f2f359d9f0331aa923f38d

▶ Peper, Roukema & Bolejko (2023) MNRAS, 525, 91 “Detecting cosmic voids via maps of
geometric-optics parameters”
▶ https://arXiv.org/abs/2304.00591
▶ frozen record: https://zenodo.org/record/8103985
▶ live git: https://codeberg.org/mpeper/lensing
▶ archived git swh:1:rev:b5dff23ab8ba8c758112d5fd3f737fb6f44cd6fe

▶ Was it a lot of work? Yes.

▶ Did we feed our variations and fixes upstream to Maneage? Many, yes.

▶ Overall feeling: was it worth it? Yes.

https://oadoi.org/10.1093/mnras/stab1342
https://arXiv.org/abs/2010.03742
https://zenodo.org/record/4699702
https://codeberg.org/boud/elaphrocentre
https://archive.softwareheritage.org/swh:1:rev:a029edd32d5cd41dbdac145189d9b1a08421114e
https://oadoi.org/10.1088/1361-6382/ac8ddb
https://arXiv.org/abs/2112.14174
https://zenodo.org/record/5806027
https://codeberg.org/boud/gevcurvtest
https://archive.softwareheritage.org/browse/revision/d9b47736f81aff9bb8f2f359d9f0331aa923f38d
https://oadoi.org/10.1093/mnras/stad2246
https://arXiv.org/abs/2304.00591
https://zenodo.org/record/8103985
https://codeberg.org/mpeper/lensing
https://archive.softwareheritage.org/browse/revision/b5dff23ab8ba8c758112d5fd3f737fb6f44cd6fe

How can you try this out?

▶ Try to reproduce Borkowska & Roukema (2022), e.g. from SWH:
swh:1:rev:d9b47736f81aff9bb8f2f359d9f0331aa923f38d (0.5 Mb; fits on a floppy disk)
▶ Did it fully configure, run and verify? If not, then post an issue at

https://codeberg.org/boud/gevcurvtest or, if relevant, post it upstream as a task or a bug:

▶ Tasks: https://savannah.nongnu.org/tasks/?group=reproduce, e.g.
▶ #15739 debian-verified sources (stable || testing)
▶ #15363 file dates after git checkout
▶ #15997 safe-rm
▶ #15390 glibc within Maneage

▶ Bugs: https://savannah.nongnu.org/bugs/?group=reproduce, e.g.
▶ #62879 Maneage handling of /dev/shm and required RAM

▶ Core Maneage: https://git.maneage.org/project.git

▶ Merge requests: any git server of your choice

▶ Description of implementation, how-to guide, recommendations:
https://codeberg.org/boud/maneage_dev/src/branch/maneage/README-hacking.md

▶ Interactive discussion: #maneage community:matrix.org (e.g.
https://matrix.to/#/#maneage_community:matrix.org)

https://archive.softwareheritage.org/browse/revision/d9b47736f81aff9bb8f2f359d9f0331aa923f38d
https://codeberg.org/boud/gevcurvtest
https://savannah.nongnu.org/tasks/?group=reproduce
https://savannah.nongnu.org/task/?15739
https://savannah.nongnu.org/task/?15739
https://savannah.nongnu.org/task/?15997
https://savannah.nongnu.org/task/?15390
https://savannah.nongnu.org/bugs/?group=reproduce
https://savannah.nongnu.org/bugs/?62879
https://git.maneage.org/project.git
https://codeberg.org/boud/maneage_dev/src/branch/maneage/README-hacking.md
https://matrix.to/#/#maneage_community:matrix.org

Conclusion

Maneage (Akhlaghi+2021, CiSE 23, 82 arXiv:2006.03018) is a customisable template that does the
following — all in plain text files:

▶ Automatically downloads the necessary software and data.

▶ Builds the software in a closed environment.

▶ Runs the software on data to generate the final research results.

▶ Only those components that need to be re-done are re-done.

▶ Using LATEX macros, the paper’s figures, tables and numbers will be automatically updated.

▶ The whole project is under version control (Git) encouraging tests and experimentation.

▶ The Git commit hash of the project source is printed in the paper and on output data products.

Published cosmology papers:

▶ Peper & Roukema (2021) MNRAS, 505, 1223, “The role of the elaphrocentre in void galaxy
formation”, https://doi.org/10.5281/zenodo.4699702

▶ Borkowska & Roukema (2022) CQG, 39, 215007 “Does relativistic cosmology software handle
emergent volume evolution?”, https://doi.org/10.5281/zenodo.5806027

▶ Peper, Roukema & Bolejko (2023) MNRAS, 525, 91 “Detecting cosmic voids via maps of
geometric-optics parameters”, https://doi.org/10.5281/zenodo.8103985

this pdf – full of clickable links: https://cosmo.torun.pl/∼boud/Roukema20240311IANCU.pdf

https://doi.org/10.1109/MCSE.2021.3072860
https://arxiv.org/abs/2006.03018
https://oadoi.org/10.1093/mnras/stab1342
https://doi.org/10.5281/zenodo.4699702
https://oadoi.org/10.1088/1361-6382/ac8ddb
https://doi.org/10.5281/zenodo.5806027
https://oadoi.org/10.1093/mnras/stad2246
https://doi.org/10.5281/zenodo.8103985
https://cosmo.torun.pl/~boud/Roukema20240311IANCU.pdf

