Maneage: a proof-of-concept for rigorous reproducible research paper criteria

Boud Roukema
Institute of Astronomy, Nicolaus Copernicus University

11 March 2024 @IA NCU

Slides’ main authors: Akhlaghi + Roukema; pdf built from git commit ba08d20;
this pdf: https://cosmo.torun.pl/~boud/Roukema20240311IANCU.pdf

https://cosmo.torun.pl/~boud
https://astro.umk.pl
https://codeberg.org/boud/maneage-slides
https://cosmo.torun.pl/~boud/Roukema20240311IANCU.pdf

Reproducibility crisis in scientific research: astronomy

Snakes on a Spaceship — An Overview of Python in Heliophysics

“...inadequate analysis descriptions and loss of scientific data have made scientific studies difficult or
impossible to replicate”. From Burrell4+-2018, (arXiv:1901.00143).

Perspectives on Reproducibility and Sustainability of Open-Source Scientific Software

“It is our interest that NASA adopt an open-code policy because without it, reproducibility in
computational science is needlessly hampered”. From Qishi+2018, (arXiv:1801.08200).

Schrédinger’s code: source code availability and link persistence in astrophysics

“We were unable to find source code online ... for 40.4% of the codes used in the research we
looked at”. From Allen+2018, (arXiv:1801.02094).

https://arxiv.org/abs/1901.00143
https://arxiv.org/abs/1801.08200
https://arxiv.org/abs/1801.02094

and in biology, other sciences, economics

Repeatability of published microarray gene expression analyses

loannidis+2009 tried to repeat the data analyses in 18 articles in Nature Genetics and only were able to
(almost) reproduce only 2 DOI:10.1038/ng.295.

Is Economics Research Reproducible? 60 papers from Thirteen Journals Say “Usually Not”

Chang & Li (2015) were are able to reproduce just under half of 67 papers in prestigious journals, with
help from the authors. DOI:10.17016/FEDS.2015.083

An empirical analysis of journal policy effectiveness for computational reproducibility

Stodden+2018 studied a random sample of 204 scientific papers in Science and were able to obtain data
or code from 44% and reproduce the findings for 26%. DOI:10.1073/pnas.1708290115

“Reproducibility crisis” in the sciences?

Baker 2016, Nature 533, 452: 70% of researchers couldn’t reproduce another scientist’s results; half
couldn’t reproduce their own. nature.com/articles/533452a

https://doi.org/10.1038/ng.295
http://dx.doi.org/10.17016/FEDS.2015.083
http://dx.doi.org/10.1073/pnas.1708290115
https://www.nature.com/articles/533452a

Definitions & Clarification per US National Academies report, 2019, DOI:10.17226/25303; (pdf)

Replicability (hardware/statistical) Reproducibility (software/deterministic)
» Similar data, similar method. » Same data, same method.
» Involves data collection. » May include simulations of data.
» Inherently includes measurement errors > Involves data analysis,

(can never be exactly reproduced). » Example: 2+ 2 =4 (i.e., sum of datasets).
» Example: Raw telescope image/spectra. » DISCUSSED HERE.
» NOT DISCUSSED HERE.

(C) 2008 J. Zawinski

(C) CC BY-SA 2006, R. Feiler

http://doi.org/10.17226/25303
https://nap.nationalacademies.org/resource/25303/R&R%20for%20SBS3.pdf
https://commons.wikimedia.org/wiki/File:Torun32m_winter.jpg
https://commons.wikimedia.org/wiki/File:The.Matrix.glmatrix.2.png

General outline of a project (after data collection)

| Software |>(Build

(Run software on data)—>(

Paper

)

| Hardware/data I

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)

(Run software on data)—>(

Paper

)

| Hardware/data I

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Different package managers have different versions of software (repology.org, 2021/12/02)

Astropy

Packaging status

GNU Astronomy Ustilities (Gnuastro)

Packaging status

Debian 10
Debian 11

Debian 12

Debian Unstable
Debian Experimental
Deepin

Devuan 3.0

Devuan 4.0

Devuan Unstable
Kali Linux Rolling
Pardus 19

Pardus 21

Parrot

PureOS Amber
PureOs landing
Raspbian Oldstable

Raspbian Stable

Raspbian Testing
Trisquel 9.0
Trisquel 10.0
Ubuntu 18.04
Ubuntu 20.04
Ubuntu 20.10 | 4.0.1+postl

Ubuntu 21.04
Ubuntu 21.10
Ubuntu 22.04
Ubuntu 22.04 Proposed

312
4.2

43.1
5.0

4.2

4.2

4.2
4.3.1

Debian 9
Debian 10
an 11
Debian 12

Deepin
Devi 2.0

Devuan 3.0

Devuan U
DPorts
BSD Ports
Funtoo 1.4
Gentoo
GNU Guix
Kali Linux Rolling
LiGuroS stable
LiGurOS develop
OpenBSD Ports
SUSE Leap 15.1

0penSUSE Leap 15.2

openSUSE Leap 15.3
openSUSE Tumbleweed
openSUSE Science Tumbleweed
Pardus 17

Pardus 19

Pardus 21

Parrot

PLD Linux

Pure0S Amber
PureOs landing
Raspbian Oldstable
Raspbian Stable
Raspbian Testing
RPM Sphere
Trisquel 9.0
Trisquel 10.0
Ubuntu 18.04
Ubuntu 20.04
Ubuntu 20.10
Ubuntu 21.04
Ubuntu 21.10

Ubuntu 22.04

Ubuntu 22.04 Prop

General outline of a project (after data collection)

(Run software on data)—>(

Paper

)

| Hardware/data I

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)

(Run software on data)—>(

Paper

)

| Hardware/data I

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)

(Run software on data)—>(Paper)

| Hardware/data I

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)

(Run software on data)—>(Paper)

| Hardware/data I

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)

(Run software on data)—>(

Paper

)

| Hardware/data I

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Matplotlib library

Example: Matplotlib (a Python visualization library) build dependencies

—

Real depén@ncies

induced by package granularity

Fig. 1. Transitive dependencies of the software environment required by a simple “import matplotlib” command in the Python 3 interpreter.

\ Fake OS dependencies

From “Attributing and Referencing (Research) Software: Best Practices and Outlook from Inria” (Alliez et al. 2020, CiSE, DOI:10.1109/MCSE.2019.2949413).
[m]

https://doi.org/10.1109/MCSE.2019.2949413

Impact of “Dependency hell” on native building in various hardware (CPU architectures)
retrieved from Debian on 2021/12/02

©debian 2etian package auto-suiing ©debian oevian packase auto-suitaing

Tracker - Changelog - Bugs - packages.d.o - Source Tracker - Changelog - Bugs - packages.d.o - Source

Package(s): [astropy Suite: [sid v](6o) Package(s): [gnuastro | Suite: [sid] (e
Compact mose [Comartaners O compact mode 0] Comotainers
Version Status. For. Buildd State |Section| Logs Actions i [Version | status | For | B |State|Section| Logs | Actions
i 501 | installed 9 9h 36m | xB6-conova-01 misc old |all (1) | giveback allis not present in the architecture list set by the maintainer
@ amasa 501 | Installed 9d9h37m | x86-csail-01 misc | old [all (1) | giveback @ amdsa 0.16.1-1 [Installed | 14d 6h 8m | x86-csail-01 misc | old |all (1) | giveback
@ armea 501 | installed sdonem | arm-ubc02 misc | old [all (1) | giveback @ armod 0.16.1-1 | Installed | 14d 5h 56m | arm-ubc-03 misc | old |all (1) | giveback
@ armel 501 | Installed 9d 6h 52m | antheil misc | old all (1) | giveback @ armel . Installed | 14d 5h 26m | henze misc | old |all (1) | giveback
o armhf 5.0-1 | Installed 9d 8h 8m | hoiby misc | old |all (1) | giveback @ armhf .16.. Installed | 14d 5h 56m | arm-conova-02 misc | old |all (1) | giveback
EED 501 Installed 9490 57m | xB6-gmet-01 misc_ old |all (1) | giveback EE .16.1-1 | Installed | 1ad 5h 56m | x86-ubc-01 misc | old |all (1) | giveback
W mipseael & 501 | Build-Attempted | 8d 16h 46m | mipsel-osuos-04 | out-ofdate | misc old |all (3) | giveback & mipssael - Installed | 1ad 5h 26m | mipsel-aql-03 misc | old |all (1) | giveback
501 Installed 9d 9h 37m | mipsel-manda-05 misc | old | all (1) | giveback @ mipsel .16 Installed | 11d 15h 26m | mipsel-osuosl-04 misc | old |all (1) | giveback
5.0-1 Installed 9d 9h 37m | ppc64el-unicamp-01 misc | old | all (1) | giveback @ ppcesel .16 Installed | 14d 6h 8m | ppc6del-unicamp-01 misc | old | all (1) | giveback
5.0-1 | Installed 9d 9h 57m | zandonai misc | old |all (1) | giveback & 5390x . Installed | 14d 6h 7m | zani misc_ | old |all (1) | giveback
5.0-1 | BD-Uninstallable | 9d 10h 22m out-of-date | misc | old | no log | giveback & alpha .16. 7d6h11m | imago misc | old |all (2) | giveback
5.0-1 2d 17h 20m | c8000 out-of-date | misc old |all (3) | giveback & hppa . 14d 5h 31m | c8000b. misc | old [all (1) | giveback
4 hurd 386 4 501 | BD-Uninstallable | 9d 10h 22m uncompiled | misc ol |no log | giveback & hurd-i386 12d 19h 21m | ironforge misc | old |all (1) | giveback
o ja6a 4 5.0-1 BD-Uninstallable | 9d 10h 22m uncompiled misc old | no log | giveback ol ia64 . 14d 5h4lm | lifshitz2 misc | old |all (1) giveback
@ Kfreebsd-amd64 § | 5.0-1 | BD-Uninstallable | 9d 10h 22m ncompiled | misc_| old | nalog | giveback @ freebsd-amd64 13d 22h 31m | kamp misc | old | all (1) | giveback
[Kireebsd-386 L | 5.0-1 | BD-Uninstallable | 9d 10h 22m uncompiled | misc ol | no log | giveback 11d11h 31m | kamp misc | old |all (1) | giveback
8 mosk 1 501 | BD-Uninstallable | 9d 10h 22m B e e el e ladan21m | vso2 misc | old | all (2) | giveback
o powerpc 5.0-1 | BD-Uninstallable | 9d 10h 22m uncompiled | misc old | no log | giveback 14d 5h 31m | blaauw misc | old [all (1) | giveback
& ppeea 501 9d9h31m | kapitsa misc_ old |all (1) | giveback blaauw2 misc | old |all (1) | giveback
 riscved 501 Sd6h1lm | rv-osuosk02 misc old |all (1) | giveback rv-0suosl-01 misc | old |all (1) | giveback
Wsha o 501 | BD-Uninstallable | 9d 10h 21m out-ofdate | misc | old | nolog | giveback sha-do-02 misc | old |all (1) | giveback
Flemnet & 501 BD-Uninstallable | 9d 10h 21m out-of-date | misc | oid | nolog | giveback nvgs120b misc | old | all (1) | giveback
2 L 501 | BD-Uninstallable | 9d 10h 21m [Eia e E el x32-d0-02 misc | old|all (2) | giveback

Astropy depends on Matplotlib GNU Astronomy Utilities doesn’t.

General outline of a project (after data coIIection)

Existing solutions:
Virtual machines
Containers (e.g., Docker) .
0Ss (e.g., Nix, GNU Guix) - Config optlons7 2

(Run software on data)—>(

Paper

)

| Hardware/data I

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data coIIection)

Existing solutions:
Virtual machines
Containers (e.g., Docker) .
0Ss (e.g., Nix, GNU Guix) - Config optlons7 2

(Run software on data)—>(

Paper

)

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data coIIection)

Existing solutions:
Virtual machines
Containers (e.g., Docker) .
0Ss (e.g., Nix, GNU Guix) - Config optlons7 2

(Run software on data)—>(Paper)

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data coIIection)

Existing solutions:
Virtual machines
Containers (e.g., Docker)
OSs (e.g., Nix, GNU Guix) :.

(Run software on data)—>(

Paper

)

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data coIIection)

Existing solutions:
Virtual machines
Containers (e.g., Docker)
OSs (e.g., Nix, GNU Guix) :.

(Run software on data)—>(

Paper

)

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data coIIection)

Existing solutions:
Virtual machines
Containers (e.g., Docker)
OSs (e.g., Nix, GNU Guix) :.

(Run software on data)—>(

Paper

)

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data coIIection)

Existing solutions:
Virtual machines
Containers (e.g., Docker)
OSs (e.g., Nix, GNU Guix) :.

(Run software on data)—>(

Paper

)

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data coIIection)

Existing solutions:
Virtual machines
Containers (e.g., Docker)
OSs (e.g., Nix, GNU Guix) :.

(Run software on data)—>(

Paper

)

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data coIIection)

Existing solutions:
Virtual machines
Containers (e.g., Docker)
OSs (e.g., Nix, GNU Guix) :.

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Paper

)

General outline of a project (after data coIIection)

Existing solutions:
Virtual machines
Containers (e.g., Docker)
OSs (e.g., Nix, GNU Guix) :.

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Paper

)

General outline of a project (after data coIIection)

Existing solutions:
Virtual machines
Containers (e.g., Docker)
OSs (e.g., Nix, GNU Guix) :.

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)

Existing solutions:

Virtual machines
Containers (e.g., Docker)
OSs (e.g., Nix, GNU Guix) :.

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)

Existing solutions:
Virtual machines
Containers (e.g., Docker) .
0Ss (e.g., Nix, GNU Guix) - Config optlons7 2

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Di Cosmo & Pellegrini (2019) Encouraging a wider usage of software derived from research

“Software is a hybrid object in the world [of] research as it is equally a driving force (as a
tool), a result (as proof of the existence of a solution) and an object of study (as an artefact)”.

https://inserm.hal.science/INRIA/hal-02545142v1

General outline of a project (after data collection)

Existing solutions:
Virtual machines
Containers (e.g., Docker) .
0Ss (e.g., Nix, GNU Guix) - Config options? :

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)

RIS FTITIITIN
wekliSRtionsd . Confirmation bias?

History recorded?

. Repository? B T Human error? Cited software?
i veion: DependSnGeST i Runiime options?: 1 Report this info?
I Software |—>(Build What order? Sync with analysis?

(Run software on data)—>(

Paper

)

| Hardware/data I Environment update?

Data base or PID? In sync with coauthors?

Calibration /version?

Integrity?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Criteria for a solution

» 1. Completeness (self-contained-ness):

(1) Only dependency should be POSIX tools (discards Conda or Jupyter which need Python).
(2) Plain text: Project’s source should be in plain-text (binary formats need special software)
(3) No impact on host OS libraries, programs, env variables.

(4) Must not require root permissions (discards tools like Docker or Nix/Guix).

(5) Builds its own controlled software + env variables.

(6) Should be usable without an internet connection.

(7) Contains full instructions for inputs, software building, and outputs: analysis + narrative +
graphical output (e.g. pdf or html)

» (8) Should be non-interactive or runnable in batch (user interaction is an incompleteness).

VVVVYYVYY

» 2. Modularity: Parts of the project should be re-usable in other projects.

» 3. Minimal complexity: Occam’s razor: “Never posit pluralities without necessity” .

> Avoiding the fashionable tool of the day: tomorrow another tool will take its place!
» Easier learning curve, also doesn't create a generational gap.
» |s compatible and extensible.

» 4. Scalability: an implementation should easily scale to arbitrarily large, complex projects.

Criteria for a solution

» 5. Verifiable inputs and outputs: Inputs and Outputs must be automatically verified.

» 6. Recorded history: Exploratory research involves modifying methods, reducing over-ambitious
goals, serendipity; hypothesis testing should have a fixed, predefined method — did the authors
modify the method? how? what? which? when?

» 7. Including the narrative that is associated with the analysis: a workflow alone lacks
motivations, interpretations.

> 8. Free and open source software (FOSS): Free software is essential: non-free software is not
configurable, not distributable, and is dependent on a non-free provider (who may discontinue it
after e.g. 5-10 years).

Reminder: Free Software Definition:
0: use 1: modify

freedom to: . jictribute 3: distribute modified versions

https://en.wikipedia.org/wiki/Free_Software_Definition

Our solution: CiSE 23 (3), pp 82-91: DOI:10.1109/MCSE.2021.3072860, arXiv:2006.03018

Toward Long-Term and Archivable

Reproducibility

Mohammad Akhlaghi ®, Insttuto de Astrofisica de Canarias, La Laguna, Tenerife

Radl nfante-Sainz ®, Universidad de La Laguna, La Lagun, Tenerfe, 38205, Spain

Boudewi F. Roukems

folaus Copernicus Universty, Torun 87100, Poland

Mohammadreza Khallat ®,ideakinformation, PC 133 Al Khuwair, Muscat, Oman

David Valls Gabaud, Pari

rvatory, Paris 75014, France

'®, Universidad internacionl de La Rioj, Logroo 26006, Spain

table

Asetofcrit

‘open-source software. As aproof of concept, we introduce "Maneage” (managing data
lineage),

The caveats

“Web extras,”

513277, the

git whichis also

“context”

producibe research has been discussed in
the sciences for at least 30 years." Many
roproducible workflow solutions. (horesfter,
“solutions") have been proposed, which mstly rely
on the common tochnology of the day, starting

This o fconced uncar a Crotive Comment Atistion
40 Ucanse.For e nformation. see Mtpecrsthecom
monsaryicenoslby/A0)

with Make and Matlab librares in the 19905, Java
in the 20005, and mostly shiting to Python during
the past decade.

However, thesa tochnologios dovelop fast, o, code
witten n Python 2 (which is no longer offcally main
tained) often cannot unwith Python 3. The cost of stay.
ing up to date withn this rapicy evohing landscape is
igh Sciontfic projects,in particular, suffer the most:
Scientists have to focus on ther own research domain,

Dateofpublcaton 15 Apil 201 date f currnt version
15 e 202

ology oftheir tools because it determines thei results

Maneage -- Managing da x | + x

¥ | | Q Search 82 9 L mo»

C @ O B https//maneage.org

Maneage
Managing Data Lineage

Maneage is a framework for having full control over a project's data lineage (thus producing a reproducible result).
Maneage is a recipient of the RDA Europe Adoption grant and was featured in a Nature Astronomy "News and Views"
article (Kuttel 2021, free-to-read link). To learn more about its founding criteria and a basic introduction, see Akhlaghi et
al. (2021), published in CiSE (Gold Open Access), also available in arXiv:2006.03018 (with extended appendix in one
PDF). You can also watch the short talk linked below or see this published RDA Adoption story (a short PDF).

https://maneage.org

https://doi.org/10.1109/MCSE.2021.3072860
https://arxiv.org/abs/2006.03018

Predefined /exact software tools

Reproducibility & software

Reproducing the environment (specific software versions, build instructions and
dependencies) is also critically important for reproducibility.

» Containers or Virtual Machines are a binary black box.

P> Maneage installs fixed versions of all necessary research software

and its dependencies.

» Installs similar environment on GNU/Linux, or Darwin/Xnu

(macOS, i0S) systems.

v

Works very much like a package manager (e.g., apt or brew).

File Edit
161
162
163
164
165
166
167
168
169
170
171
172

Options Buffers Tools Conf Help
B x B Q
openssh-version = 8.0p1
patch-version
pcre-versio!
pixman-version
python-version
r-cran-version = 4.1.2
Hamses-scalav-version = 0.0-482f90f
ramses-scalav-commit-i 82f90f59542
ramses-use-mpif08-ver: =3.0-a317f07
ramses-use-mpif08-commit-id = a317f0761dcc
revolver-version = 0.0-43cd72f
revolver-commit-id = 3b153351e3bb67c50010c0dc2

-:--- versions.conf 43% L167 Git-gevcurvtest [(Conf[Unix]);

350
351
352
353
354
355
356
357

#

CLASS:R-CRAN-START (important identifier for 'a
swk'; don't modify this line)
r-cran-cli-version = 2.5.0

r-cran-colorspace-version = 2.0-1
r-cran-cowplot-version =
H—cran-crayon-versio
r-cran-digest-version
r-cran-ellipsis-versio
r-cran-fansi-ver:
r-cran-farver-version = 2.1.

---- versions.conf 91% L353 Git-gevcurvtest [(Conf[Unix])] 1

Controlled environment and build instructions

emacs@akhlaghi x
File Edit Options Buffers Tools Makefile Help

% E Q

include reproduce/software/config/installation/texlive.nk
include reproduce/software/config/installation/versions.nk

e b B x B

|

Save 4Undo

lockdix = $(BDIR)/locks l
tdir = $(BDIR)/software/tarballs

ddir = $(BDIR)/software/build-tap

idir = $(BDIR)/software/installed

ibdir = $(BDIR)/software/installed/bin

ildir = $(BDIR)/software/installed/1ib

dtexdix = $(shell pud)/reproduce/software/bibtex

itidir = $(BDIR)/software/installed/version-info/tex
ictdir = $(BDIR)/software/ installed/version-info/cite
ipydir = $(BDIR)/software/installed/version-info/python
ibidir

$(8D1R) /software/installed/version-info/proglib

Set the top-level software to build.

all: s(foreach p, $(top-level-programs), $(ibidir)/s(p)) \
$(foreach p, $(top-level-python), $(ipydir)/$(p)) \
s(itidir)/texlive

Other basic environment settings: We are only including the host

operating system's PATH environment variable (after our own!) for the
conpiler and linker. For the library binaries and headers, we are only
using our internally built libraries

#

To investigate:

#

1) Set SHELL to "$(ibdir)/env - NAMESVALUE $(ibdir)/bash’ and set all
the parameters defined bellow as "NAMESVALUE' statements before

calling Bash. This will enable us to completely ignore the user's
native environment

#

#

#

2) Add “--noprofile --norc' to *.SHELLFLAGS' so doesn't load the

user's environment.

HeESHELL:

SHELLFLAC = --noprofile --norc -ec
export ((A(NE _DISABLE := 1

export P = $(ibdir)

export ShELL
export CPPFLAGS

export PKG_CONFIG_PATH
export PKG_CONFIG_LIBDIR
export LO_RUN_PATH
export LO_LIBRARY_PATH := $(ildix):$(il64dir)

export LOFLAGS += $(zpath_comand) -L$(ildir)

We want the download to happen on a single thread. So we need to define a
[lock, and call a special script we have written for this job. These are

emacs@akhlaghi x
File Edit Options Buffers Tools Makefile Help
o @ B X Hswe Jndo 4 E Q
not 'LIBS'.
¥
On Mac systems, the build complains about ‘clang’ specific
features, 50 we can't use our own GCC build here.

1 x$(on e os) = xyes 1; then \
export CC=clan
expoxt =]a»gn, \

s(aa;x»
xm -xf cmake-$ (cnake-version) \
tar xf $<\

ed cnake-$ (cnake-version) \
_Ibootstrap

- bzip2 --systen-1iblzna --no-qt-
make j!(numthreadx) lseeessitos 1sel derypto 12 lemaoser \
sake dnstall \

.

m rf cmake-$ (cnake-version) \
echo “CMake $(cmake-version)” > $@

FSIS:S:S: FFB‘.FS:

s(i tar.gz
S(eall ghutld, s, ghostscript-S(ghostcript-version) \
& echo "GPL Ghostscript $(ghostscript-version)” >

B : $(tdir) .tar.1z \
$(ibidir) /ghostscript \
$(1bidir)/Libjpeg \
$(1bidin) /LibLIfF \
$(1bidir) /1ibgit2 \
$(ibidix) mcslib \
$(ibidir) /gsl
ifeq (s(static_build),yes) I

p
endif
$(call gbuild, $<, gnuastro-$(gnuastro-version), static, \
ssstaticopts, -j$(nunthreads), \
e check -j$(nunthreads)) \
8 cp $(dtexdir) /gnuastro. tex $(ictdir)/ \
4 echo "GNU Astronomy Utilities §(gnuastro-version) \citep(gnuastro}’ > »

“tarxz \
$(ibidir)/1ibjpeg \
$(ibidir) /1ibEiff \
$(ibidir)/zlib
$(call gbuild, $<, ImageMagick-$(inagenagick-version), static, \
--without-x --disable-openny
& echo "InageMlagick $(imagemagick-version)

> 50

high-level.nk 67% L584 Git:master (Makefile)

[m] = =

DA

Controlled environment and build instructions

emacs@akhlaghi
File Edit Options Buffers Tools Makefile Help

Save +Undo % E Q

include reproduce/software/config/installation/texlive.mk
include reproduce/software/config/installation/versions.mk

e b B x B

lockdir = $(BDIR)/locks
tdir

$(BDIR)/software/ tarballs
ddir = $(BDIR)/software/build-tap
$(BDIR) /software/installed
$(BDIR) /software/installed/bin
ildir = $(BDIR)/software/installed/1ib

dtexdix = $(shell pud)/reproduce/software/bibtex

itidir = $(BDIR)/software/installed/version-info/tex
ictdir = $(BDIR)/software/ installed/version-info/cite
ipydir = $(BDIR)/software/installed/version-info/python

ibidir = $(BDIR)/software/ installed/version-info/proglib

Set the top-level software to build.

all: s(foreach p, $(top-level-prograns), $(ibidir)/s(p)) \
$(foreach p, $(top-level-python), $(ipydir)/S(p)) \
s(itidir)/texlive

Other basic environment settings: We are only including the host

operating systen's PATH environment variable (after our own!) for the
conpiler and linker. For the library binaries and headers, we are only
using our internally built libraries

To investigate:

1) Set SHELL to "$(ibdir)/env - NAMESVALUE $(ibdir)/bash’ and set all
the paraneters defined bellow as "NAMESVALUE' statements before
calling Bash. This will enable us to completely ignore the user's
native environment

2) Add “--noprofile --norc' to *.SHELLFLAGS' so doesn't load the
s environment.

s noprofile --noxc -ec
export CCACHE_DISABLE 1

export FATH = $(ibdir)

export SHELL = $(ibdir) /bash

export CPPFLAGS = -Is(idix)/include
export PKG_CONFIG_PATH
export PKG_CONFIG_LIBDIR
export LD_RUN_PATH = $(ildir):$(i164dix)

export LD_LIBRARY_PATH $(i1dix):$(il64dir)

export LOFLAGS = $(xpath_connand) -L$(ildix)

We want the download to happen on a single thread. So we need to define a
[lock, and call a special script we have written for this job. These are

emacs@akhlaghi x
File Edit Options Buffers Tools Makefile Help
o @ B X Hswe Jndo 4 E Q
not 'LIBS'.
i
0n Mac systems, the build complains about ‘clang’ specific
features, 50 we can't use our own GCC build here.

[xS(on nac.os) = xyes 1 then \
export CC=clar

export .]angu, \

i

d smau)

& m -xf cmake-$(cnake-version) \

8 tar xf <

8 cd cmake-$ (crake-version) \

8& . /bootstrap N
--systen-bzip2 --systen-liblzna --no-qt-

a8 make -8 (numthreade) LISS 351185 -Lssl Lerypt 12 leraoser \

&4 make install \

s .\

8 m -xf cnake-$(crake-version) \

8& echo “CMake §(crake-version)® > $@

s(i tar.gz
S(eall ghuild, s ghostscript-S(ghostcript-version)) \
echo "GPL Ghostscript $(ghostscript-version)” >

B(ibidir) /gnuastro: $(tdir)/gnuastro-$(gnuastro-version). tar.1z \
ibidix) /ghostscript \
$(ibidir)/libjpeg \
$(ibidir) /1ibtiff \
$(ibidir) /1ibgit2 \
$(ibidir) /weslib \

$(ibidir) /gsl
ifeq ($(static_build),yes) I
P ;
endif
S(coll g, 5, gruastos (gruastroversion), static, \
ssstaticopts, -j$(nunthreads), \
ke <heck -3$(numthreads)) \
& cp $(dtexdix) /gnuastro. tex $(ictdir)/ \
&& echo "GNU Astronony Utilities §(gnuastro-version) \citep{gnuastro}” > »
se

tarxz \
$(ibidir)/1ibjpeg \
$(ibidir) /1ibtiff \
$(ibidir)/zlib
$(call gbuild, $<, ImageMagick-$(inagenagick-version), static, \
--without-x --disable-openmp, V=1) \
& echo "InageMlagick $(imagenagick-version)” > $&

Matplotlib library

Example: Matplotlib (a Python visualization library) build dependencies

—

Real depén@ncies

S

induced by package granularity

Fig. 1. Transitive dependencies of the software environment required by a simple “import matplotlib” command in the Python 3 interpreter.
From “Attributing and Referencing (Research) Software: Best Practices and Outlook from Inria” (Alliez et al. 2019, hal-02135891)

\ Fake OS dependencies

https://hal.archives-ouvertes.fr/hal-02135891

All high-level dependencies are under control (e.g., NoiseChisel's dependencies)

GNU/Linux distribution Darwin/Xnu

$ 1dd .local/bin/astnoisechisel $ otool -L .local/bin/astnoisechisel
libgnuastro.so.7 => /PROJECT/libgnuastro.so.7 (0x00007£6745£39000) /PROJECT/1libgnuastro.7.dylib (comp ver 8.0.0, cur ver 8.0.0)
1ibgit2.50.26 => /PROJECT/1ibgit2.s0.26 (0x00007£6745d£1000) /PROJECT/1ibgit2.26.dylib (comp ver 26.0.0, cur ver 0.26.0)
1libtiff.so.5 => /PROJECT/1libtiff.so.5 (0x00007£6745d77000) /PROJECT/1ibtiff.5.dylib (comp ver 10.0.0, cur ver 10.0.0)
liblzma.so.5 => /PROJECT/liblzma.so.5 (0x00007£6745d4£000) /PROJECT/1iblzma.5.dylib (comp ver 8.0.0, cur ver 8.4.0)
libjpeg.s0.9 => /PROJECT/libjpeg.s0.9 (0x00007£6745d12000) /PROJECT/libjpeg.9.dylib (comp ver 12.0.0, cur ver 12.0.0)
libwcs.so.6 => /PROJECT/libwcs.so.6 (0x00007£6745ba8000) /PROJECT/libwcs.6.2.dylib (comp ver 6.0.0, cur ver 6.2.0)
libcfitsio.so.8 => /PROJECT/libcfitsio.so.8 (0x00007£674588b000) /PROJECT/1libcfitsio.8.dylib (comp ver 8.0.0, cur ver 8.3.47)
libcurl.so.4 => /PROJECT/libcurl.so.4 (0x00007£6745811000) /PROJECT/libcurl.4.dylib (comp ver 10.0.0, cur ver 10.0.0)
libssl.so.1.1 => /PROJECT/1libssl.so.1.1 (0x00007£6745777000) /PROJECT/1ibssl.1.1.dylib (comp ver 1.1.0, cur ver 1.1.0)
libcrypto.so.1.1 => /PROJECT/libcrypto.so.1.1 (0x00007£6745491000) /PROJECT/libcrypto.1.1.dylib (comp ver 1.1.0, cur ver 1.1.0)
libz.so.1 => /PROJECT/1libz.so.1 (0x00007£6745474000) /PROJECT/1ibz.1.dylib (comp ver 1.0.0, cur ver 1.2.11)
libgsl.so0.23 => /PROJECT/libgsl.so0.23 (0x00007£67451e3000) /PROJECT/1ibgsl.23.dylib (comp ver 25.0.0, cur ver 25.0.0)
libgslcblas.so.0 => /PROJECT/libgslcblas.so.0 (0x00007£67451a1000) /PROJECT/1libgslcblas.0.dylib (comp ver 1.0.0, cur ver 1.0.0)
linux-vdso.so.1 (0x00007£ffdcbf7000) /usr/lib/libSystem.B.dylib (comp ver 1.0.0, cur ver 1252.50.4)

libpthread.so.0 => /usr/lib/libpthread.so.0 (0x00007£6745006000)
1libm.so.6 => /usr/lib/libm.so.6 (0x00007£6745027000)

libc.so.6 => /usr/lib/libc.so.6 (0x00007f6744e43000)

1ibdl.so0.2 => /usr/1lib/libdl.so.2 (0x00007f6744e1e000)
/1ib64/1d-1inux-x86-64.50.2 => /usr/1ib64/1d-1linux-x86-64.s0.2

Project libraries: High-level libraries built from source for each project (note the same version in both OSs).
GNU C Library: Project specific build is in progress (http://savannah.nongnu.org/task/?715390).
Closed operating system files: We have no control on low-level non-free operating systems components.

http://savannah.nongnu.org/task/?15390

Advantages of this build system

» Project runs in fixed/controlled environment: custom build of bash, make,
GNU Coreutils (1s, cp, mkdir and etc), awk, or sed, KTEX, etc.

v

No need for root/administrator permissions (on servers or super computers).

» Whole system is built automatically on any Unix-like operating system
(~ 2-3 hours; Sep 2022).

v

Dependencies of different projects will not conflict.

v

Everything in plain text (human & computer readable/archivable).

Software citation automatically generated in paper

Dt e). Yo My

Figure : (o) An s g o the Wide Fild Plcon Caers

3. ACKNOWLEDGEMENTS

06:24, xfonts 2016-06-24, lem 2016-06.24, e 201606
o B and kol 275, We

ment stion of your paper. ‘This eproducible paper emplatc

sy infasructue. This rescarch (and may obers) woukd ot
E e,

same graos. 1fyou don't use Gouasto n your l/custemized
o s e e g e iy
aning the reproduciblepaper

“This research was party dm: i GRC Asroromy Ui
s (G, a0

Refernces

e 5268 fork on Gruasto and the
rcw«llmNr v an |.m »m o b e npmee
Scicnce, and Technal-

2000, T one
ofthe cumple ages e FTS sandand webpoge, kept s saaeges
o this e o (1) Hitogran of psl o n o).

S Scientfic Re
scarch (124012, 24253003),the Buropean Research Courcil
(ERC) advanced zrant 339650-MUSICOS, Fanopean Urion's
Horizon 2020 research and imnovstion programe under M

o) o o et e g s i
Hoever the probl

Stodowska
LI, and from the Spanish Ministy of Economy and Competi

o).

Ttallng these dependencies fram sourc, s ot easy and wil
am e rpoducilyofyou pps. Nttt sl
e e by hs gl et o sy
ey, il 2o oape be vl e repehen

with the ollowin fre ol pro-

e
s and e Bag? 106, CFITSIO 3.5, ke 3142,

seproduce your esuls.

Rhermore. since PGEPIots i il by LTEX it respects

e propertes of your et lo exnplelne widlhand fonis snd

et Therefoe the fnal plt blends in year paper much more
nicey. I alo has wonderfol manual”

FEX macros that o you o

e wiin s documentas 1o an e, or sl

‘tehanges. then the one thal wis macked
il mm nm ol lnd v wih e e)
b ome marked <orok will ot be n he il PDF. You
o thas e i \wm anges to easly make copies of

Pl Precsion Arilhmeti Library 1.2, GNU Muliple Prcision
Eonpin By, U Ml Freciion Foaing o R

cudiine 51
Sed 47, GNU Tar 1,32, GNU Waet
L 26, HDFS l

1105, ImaeMazick 7.05-46, Libbsd 091, Libgi20.260,1ib-

i o e lloviag ke v el oy 3.1

your resears i cosuthos (Who e ot nlreied i
the new partsor mm o
be disuced by hese st n heir s e reading).

2 NOTICE AND CITATIONS.

T s s i ol ity sl

@ 2013, wa
2018, Cycker 0100, Cythor 0256 (Beoe t ol 2011, Sy
200, Kinisolver L0.1. Matpl

1162 (van der Wall ot al. 2011, phgeonty 151, PyPas
2531 pthon<deeail2 80, Sepy 13 1lghan 2007, Millman
nd Aivazis 2011, Setupols 40,50 Setupools sem 32.0 and
Sia 1120,

papers.pl
the endof m absact ety mendoning hatyour work s lly
reproduciv

For the me being, we have't welten 2 specifc

puper
o s . Ui e we s e pracl o cold

per hatused he carly versions of s emplae:
Alblgha e (015

e PDF v e kol pkaps: e 20,

e s o sl e s o usting
ek Tl i reno g

QT ren e ———

12 pal 312 s 110, pfpos 116 prpi 2011,
ot 11, e 7, e 0 314158
314150265, 250 imss 2016-06 2
e 20160621 s 3105 e 1105 o 216

MK ang - A (Mo 01D, 5 139,
Ol T Ny 0510
.. 3t o 01 CE 1,

Dt e). Yo My

Fimure 2 o) An cxamie moge o the Wide ield ey Comera

3. ACKNOWLEDGEMENTS

Software citation automatically generated in paper

06:24, txfonts 2016-06-24,slem 2016-06-24, e 2016-06-24,
o and kel 2.75. We are

ment sction of your pager. T

s reproducible paper emplatc

same grans. Ifyou don't se Gouasto in your finacustomized
s e e o s g e aly men
aning the reproduciblepaper

“This research was party dm: i GRC Asroromy Ui
s (G 010

sary infrastrocture. This rescarch (and many ohers) would not
E them.

References

Ay Gt o1y, 61 m

templte v0-364-£265 ad the
el P gt st i by e
Ninisry of Education, Calue, Spori, Scien il

2000, T one
ofthe cumple ages e FTS sandand webpoge, kept s saaeges
o e o, () Histogram of pel o).

ul i Technol.
3 OVES Scientfic Re
scarch (124012, 24253003),the Buropean Research Courcil

R aaneed o TOCRONUSICDS. P Ui
Horizon 2020 research and innovation programme under Marke

plots) o your project. “There are highlevel language beaics
Hoever the probl

Stodowska
LI, and from the Spanish Ministy of Economy and Competi

Ttallng these dependencies fram sourc, s ot easy and wil
am e rpoducilyofyou pps. Nttt sl

y s of hese igh-JovelIaris, that sou casly
vy o e b el oo b

following free softvare pro-

‘grams and lbaris: Bzip? 105, CFITSIO .45, CMake 3.142.

B
o, s PG sl b X s

i proenies o oo i widthand foms and
0 Trercor e lot i n o pper mch mere
foely. I¢lso s wonderful manal.
his emplate also defines two STEX maceos thatllow 0u €0
e wiin s documentas 1o an e, or sl
s text s been markod s . 1 you comment the
sdingav -ul\n«mrnhmhn:ummyﬂydcknnnlh:hn:yl\m
P ‘tehanges. then the one thal wis macked
il »cm nm ol lnd v wih e e)
and e con ot be n the fnal PDF: Yo
Lot b & i ok o ot
ch o cxisting couthors (Who 85 s erosid i
i oo pror o) o new

o cion (GCC) 9.1.0, GNU Coreutls &
GNU Diffus 3.7, GNU Findutls 4.60.199-

33, GNU G 110, GNU Inger St iy 018, GNU
Lol 246 GNU Md 1415, GNYU Mk 420, GNU
i Atmat ey E1 Gt e eoion
Conples Wy, GNU Mkl Prcion Foaing o e
GNU Readline

1, GPL Glostcript Sl
1105, ImageMagick 70846, Libbsd 9.1, Libgi20.260,Lib-
ince 1637, LibUl 40.1 rastors

Witkia ,.m.m‘.xum-\;mummw4 Py 3LI

be disuced by hese st n heir s e reading).

2 NOTICE AND CITATIONS.

@
T tomer 2100, oo 0296 (B o o 201, Ko
25 vl L0\ Malol 013 G 007, Namgy
1162 (van der Wall ot al. 2011, phgonty 15.1, PyPuning
23.1, pyshondatcul2 80, Scipy 1 2.1 Oliphant2007; Millman
and Aivazis 2011), Setuptols 40,80 Setupools sem 32.0 and
Sia 1120,

T s s i ol ity sl
papers

the end m .m aostctclady mendoning that o ok s lly
reprodu

o e b, e b vt paper
for s erplte. Undl tem,we wouk e gl fire nmm
e the st pper at ed e oy vrsions of s
At e

th POFuing e llowin pcages bier >

e s o sl e s e o i
ek Tl i reno g

s o s

Lt 13 e 10 pfs 16 011
p 2011, e o671 14199265
514150265, lexgyre

e 20160621 s 3103 e 1105 s 216

Nl K.) ani¥ Ay A 201, S, 139,
Ohhent. T £ (i 207 5. 910
VWS o o . €, 1,

General outline of a project (after data collection)

Config environment?

Config options?
Repository?

Confirmation bias?
Dep. versions?
What version?

History recorded?
Dependencies?
Software

P>C

Human error?

Cited software?
Build

Runtime options?

Report this info?
What order? Sync with analysis?
(Run software on data)—>(Paper
| Hardware/data I Environment update?

)

In sync with coauthors?

Green boxes with sharp corners: source/input components/files
Blue boxes with rounded corners: built components.

Red boxes with dashed borders: questions that must be clarified for each phase

Input data source and integrity is documented and checked

emacs@akhlaghi

File Edit Options Buffers Tools Makefile Help

L E x E Q
Stored information about each input file: Bt s necessary for this project
) .) ¥ This file 55 zead by the confioure script and ruming Makefiles
> PID (Persistent IDentifier if available)
:
» Download URL (if available). S bereitied in oo aeoin without royaiy provided the copyright notice and
3 T novice sre preserves. | This File 1 otered so-is, vitht ony
. . . vz
» checksum (e.g. md5sum, sha512sum) to check integrity (calculate with
standard tools) rr i
EiSDsshos - ossemassIeSTRISz i undessa
e

XOFF7SSWURL = http://axchive. stsci.edu/pub/hlsp/xdf
GE = hlsp_xdf_hst_acswfc-60mas_hudf_f775w_v1_sci.fits

= 81408ed0949bd3a03cabfe7e229472e6

= 106M

= https://asd.gsfc.nasa.gov/UVUDF

All inputs are downloaded using the given PID/URL when necessary -
(during the analysis). i R

UVUDFSEGSIZE = 1.3M

Checksums are checked to make sure the download was done properly or the file
is the same (hasn’t changed on the server/source).

Example from the reproducible paper arXiv:1909.11230.
This paper needs three input files (two images, one catalog).

INPUTS .k AL L1 Git-master (GNUmakefile)
or Ihfommation sbout O Enacs and the system, type C-h C-a.

https://projects.tib.eu/pid-service/en/persistent-identifiers/persistent-identifiers-pids
https://arxiv.org/abs/1909.11230

Input data source and integrity is documented and checked

Stored information about each input file:
> PID (Persistent IDentifier if available)

> Download URL (if available).

» checksum (e.g. md5sum, sha512sum) to check integrity (calculate with

standard tools)

All inputs are downloaded using the given PID/URL when necessary

(during the analysis).

Checksums are checked to make sure the download was done properly or the file
is the same (hasn’t changed on the server/source).

Example from the reproducible paper arXiv:1909.11230.
This paper needs three input files (two images, one catalog).

emacs@akhlaghi

File Edit Options Buffers Tools Makefile Help

L) E x E Q
B Input files necessary for this project
H
This file is read by the configure script and running Makefiles
M
Copyright (C) 2018-2019 Mohammad Akhlaghi <mohammad@akhlaghi.org>
M

Copying and distribution of this file, with or without modification, are
permitted in any medium without royalty provided the copyright notice and
this notice are preserved. This file is offered as-is, without any

warranty

MS1SDSSRURL = https://dr12.sdss.org/sas/dr12/boss/photo0bj/frames/301/3716/6
M51SDSSRIMAGE = frame-r-003716-6-0117.fits.bz2

M51SDSSRUDS = 965da8bad861e9429701521a11b2d80aa

MS1SDSSRSIZE = 2.8M

XOFF7SSWURL = http://axchive. stsci.edu/pub/hlsp/xdf
XOFF7SSWIMAGE = hlsp_xdf_hst_acswfc-60mas_hudf_f775w_v_sci. fits
XOFF75SHMDS = 81408ed0949bd3ad3cdbfe7e22947266

XOFF77SHSIZE = 106M

UVUDFSEGURL = https://asd. gsfc.nasa. gov/UVUDF
UVUDFSEGIMAGE = segmentation_map_rafelski_2015. fits.gz
UVUDFSEGMDS = 29d5b3e5311b77512baf27db6ad0el1b
UVUDFSEGSIZE = 1.3M

INPUTS .k AL L1 Git-master (GNUmakefile)
or Ihfommation sbout O Enacs and the system, type C-h C-a.

https://projects.tib.eu/pid-service/en/persistent-identifiers/persistent-identifiers-pids
https://arxiv.org/abs/1909.11230

General outline of a project (after data collection)

Config environment?

Config options?
Repository?

Conflrmatlo bla 7
Dep. versions?
What version?

History recorded?

Dependencies?

Cited software?
Report this info?
Software |—>(Build What order7 ': Sync with analysis?
(Run software on data)—>(
| Hardware/data I
Data base, or PID?

Paper)
Envnronment update?

Calibration /version?

Integrity?
Green boxes with sharp corners: source/input components/files
Blue boxes with rounded corners: built components.

Red boxes with dashed borders: questions that must be clarified for each phase

Reproducible science: Maneage is managed through a Makefile

All steps (downloading and analysis) are managed by Makefiles
(example from zenodo.1164774):

» Unlike a script which always starts from the top, a Makefile starts from the
end and steps that don’t change will be left untouched (not remade).

» A single rule can manage any number of files.

P> Make can identify independent steps internally and do them in parallel.

> Make was designed for complex projects with thousands of files (all major
Unix-like components), so it is highly evolved and efficient.

P> Make is a very simple and small language, thus easy to learn with
well-checked, free-licensed documentation (for example GNU Make's
manual).

Fle Edt Options Buffers Tools Makefie Help

$(ibidir)/gevolution-$(gevolution-version): $(ibidir)/gsl-$(gsl-v
ersion) \
$(ibidir)/fftw-$(fftw-version) \
$(ibidir)/hdf5-$(hdf5-version) \
$(i r)/patch-$(patch-version) \
$(il r)/cosmdi -S(cosmdist-version)N
| $(idir)/share
Autoreconf is needed when inhomog is somewhat old,
e.g. built for debian/oldstable, while maneage uses
much more recent versions of the autotools.
arball=gevolution-$(gevo ersion) tar g
high-level. nk 26% L594 Git-gevcurvtest [(GNUmakefile)] ¢
rm -rf cmake-$(cmake-version)
echo "CMake $(cmake-version)"” > $@

$(ibidir)/cosmdist-$(cosmdist-version): $(ibidir)/gsl-$(gsl-versi
on)|]

tarball=cosmdist-$(cosmdist-version).tar.gz

$(call import-source, $(cosmdist-url), $(cosmdist-checksu
m),\

v$(cosmdist-version).tar.qz)

U:--- high-level.mk 55% L1226 urvtest [(GNUmakefile)]

$(call gbuild, gperf-$(gperf-version), static)

echo "GNU gperf $(gperf-version)" > $@

S(ihidir)/gsl-s(gsI-version):ﬂ
tarball=gsl-$(gsl-version).tar.lz
$(call import-source, $(gsl-url), $(gsl-checksum))
$(call gbuild, gsl-$(gsl-version), static)

25t T(GNUmakefile)] 19

https://doi.org/10.5281/zenodo.1164774
https://www.gnu.org/software/make/manual/
https://www.gnu.org/software/make/manual/

Reproducible science: Maneage is managed through a Makefile

Fie Edt Options Buffers Tools Makefie Help
All steps (downloading and analysis) are managed by Makefiles $ B x % & B Q
(example from Zen0d0‘1164774)' $(ibidir)/gevolution-$(gevolution-version): $(ibidir)/gsl-$(gsl-v
ersion) \
$(ibidir)/fftw-$(fftw-version) \
» Unlike a script which always starts from the top, a Makefile starts from the :E:b'g::;;:::hs(s'::ic‘f;:::l:‘)\
end and steps that don't change will be left untouched (not remade). s(ibidir)/cosmdist-$(cosmdist-version) \|
| $(idir)/share
Autoreconf is needed when inhomog is somewhat old,
e.g. built for debian/oldstable, while maneage uses
. . ## much more recent versions of the autotools.
» A single rule can manage any number of files. tarball=gevolution-$(aevolution.version).tar.az
- high-level.mk 2 4 Git-gevcurvtest [(GNUmakefile)] 19:
rm -rf cmake-$(cmake-version)
echo "CMake $(cmake-version)"” > $@

P> Make can identify independent steps internally and do them in parallel. $(ibidir)/cosmdist-$(cosmdist-version): $(ibidir)/gsl-sfgsl-versi
on|
tarball=cosmdist-$(cosmdist-version).tar.gz
$(call import-source, $(cosmdist-url), $(cosmdist-checksu
. m),\
> Make was designed for complex projects with thousands of files (all major v$(cosmdist.version).tar.g
Unix-like components), so it is highly evolved and efficient. Stcall gbuild, gpert-S(gperf-version), static
echo "GNU gperf $(gperf-version)" > $@

S(ihidir)/gsl-s(gsI-version):ﬂ

P> Make is a very simple and small language, thus easy to learn with tarball=gsl-$(gsl-version).tar.Iz
. . , $(call import-source, $(gsl-url), $(gsl-checksum))
well-checked, free-licensed documentation (for example GNU Make's $(call gbuild, gsk-$(gsl-version), static)

manual).

https://doi.org/10.5281/zenodo.1164774
https://www.gnu.org/software/make/manual/
https://www.gnu.org/software/make/manual/

Reproducible science: Maneage is managed through a Makefile

All steps (downloading and analysis) are managed by Makefiles
(example from zenodo.1164774):

» Unlike a script which always starts from the top, a Makefile starts from the
end and steps that don’t change will be left untouched (not remade).

» A single rule can manage any number of files.

P> Make can identify independent steps internally and do them in parallel.

> Make was designed for complex projects with thousands of files (all major
Unix-like components), so it is highly evolved and efficient.

P> Make is a very simple and small language, thus easy to learn with
well-checked, free-licensed documentation (for example GNU Make's
manual).

Fle Edt Options Buffers Tools Makefie Help

° B x x & B Q

$(ibidir)/gevolution-$(gevolution-version): $(ibidir)/gsl-$(gsl-v
ersion) \

$(ibidir)/fftw-$(fftw-version) \ I
$(ibidir)/hdf5-$(hdf5-version) \
$(ibidir)/patch-$(patch-version) \

$(il dir)/:osmdist-S(cosmdist-versian)\H

| $(idir)/share
Autoreconf is needed when inhomog is somewhat old,
e.g. built for debian/oldstable, while maneage uses
much more recent versions of the autotools.
tarball=aevolut $(aevolution-version).ta

-- high-level.mk 2 4 Git-gevcurvtest [((JV\JUmakF-ﬁM] 193

rm -rf cmake-$(cmake-version)
echo "CMake $(cmake-version)"” > $@

$(ibidir)/cosmdist-$(cosmdist-version): $(ibidir)/gsl-$(gsl-versi
on)] I
tarball=cosmdist-$(cosmdist-version).tar.gz
$(call import-source, $(cosmdist-url), $(cosmdist-checksu
m),\
v$(cosmdist-version).ta
-- high-level.mk 55% L12 urvtest [(GNUmakefile)]
$(call gbuild, gperf-$(gperf-version), static)
echo "GNU gperf $(gperf-version)" > $@

S(ibidir)/gsl-s[gsl-version):ﬂ
tarball=gsl-$(gsl-version).tar.lz
$(call import-source, $(gsl-url), $(gsl-checksum))
S(callghulld gsl S(gsl version), static)

hi h level. mk 30% L675 Gi gevcurvtest [(GNUmakef le)]
Mark set

https://doi.org/10.5281/zenodo.1164774
https://www.gnu.org/software/make/manual/
https://www.gnu.org/software/make/manual/

General outline of a project (after data collection)

Config environment?

Config options?
Repository?

Confirmation bias? H|storyrecorded7
Dep. versions? Ay e
What version? Dependencies? Runtime options?
I Software |—>(Build What order?
(Run software on data)—>(Paper)
| Hardware/data I Environment update?
Data base, or PID?

In sync with coauthors?
Calibration/version?

Integrity?
Green boxes with sharp corners: source/input components/files
Blue boxes with rounded corners: built components.

Red boxes with dashed borders: questions that must be clarified for each phase

Values in final report/paper

All analysis results (numbers, plots, tables) written in paper’s PDF as KTEX macros. They are thus
updated automatically on any change.

Here is a portion of the Borkowska & Roukema (2022) abstract and its ISTEX source (arXiv:2112.14174).
e o o s om0 .

{We find that {\inhomogname} allows emergent volu 4 equations that convert from the perturbed reference solution to the effective solution.
me evolution correctly at first order through to the cur We find that INHOMOG allows emergent volume

evolution correctly at first order
Frent epoch. through to the current epoch. For initial conditions with a resolution of N = 128%

For initial conditions with a resolution of $N=\Ncroot particles and an initial non-zero extrinsic curvature invariant I; = 0.001, INHOMOG
FInhomogHTwEightvalueA3$ particles and an initial n matches an exact Friedmannian solution to —0.0058% (Einstein-de Sitter, EdS) or
zero extrinsic curvature invariant $\initial{\invI} = \Init —0.0033% (ACDM). We find that GEVOLUTION models the dec
EPerturbInhomogPlusvalue$, {\inhomogname} matches accuracy, and excludes the growing mode by construction. For
an exact Friedmanni@n solution to \postrefereechange initial scalar potential ® = 0.001, OLUTION is accurate for the
Fs{$\InhomogAccuracyPercentEdSzdzzouHTwEightvalue 0.012% (EdS) or 0.013% (ACDM). We conclude that this special case of an exact
$\% (Einstein--de~Sitter, EdS) or $\InhomogAccuracyPer non-linear solution for a perturbed Friedmannian model provides a robust calibration
FcentLCDMzdzzouHTwEightvalue$\%} ($\Lambda$CDM). for relativistic cosmological simulations.

%The Poisson-gauge formalism of {\gevolutionname}

=]
F allows both growing and decaying modes for emergen ﬂﬂﬂﬂﬁ <% | Page |11 of 50 125% V4 Eﬂﬂ

aper.tex 4% L85 G

/ing mode to fair
/= 128% and an J

aying mode to

https://arxiv.org/abs/2112.14174

Values in final report/paper

All analysis results (numbers, plots, tables) written in paper’s PDF as KTEX macros. They are thus
updated automatically on any change.

Here is a portion of the Borkowska & Roukema (2022) abstract and its ISTEX source (arXiv:2112.14174).

Fie Edt Optins Buffers Took TeX Tec Help

] i w BB Q

{We find that {\inhomogname} allows emergent volu 4
me evolution correctly at first order through to the cur
Frent epoch.

For initial conditions with a resolution of $N=\Ncroot
FInhomogHTwEightvalueA3$ particles and an initial n
zero extrinsic curvature invariant $\initial{\invI} = \Init
FPerturbInhomogPlusvalue$, {\inhomogname} matches y, and excludes the growing mode by constru &
an exact Friedmannian solution to \postrefereechange initial scalar potential & = 0.001, CEVOLUTION is accurate for the decaying mode to J
Fs{$\InhomogAccuracyPercentEdSzdzzouHTwEightvalue 0.012% (EdS) or 0.013% (ACDM). We conclude that this special case of an exact
$\% (Einstein--de~Sitter, EdS) or $\InhomogAccuracyPer non-linear solution for a perturbed Friedmannian model provides a robust calibration
FcentLCDMzdzzouHTwEightvalue$\%} (5\Lambda$CDM).ﬂ for relativistic cosmological simulations.

%The Poisson-gauge formalism of {\gevolutionname}

=]
F allows both growing and decaying modes for emergen ﬂﬂﬂﬂﬁ <% | Page |11 of 50 125% V4 Eﬂﬂ

aper.tex 4% L85 G

equations that convert from the perturbed reference solution to the effective solution.
We find that INHOMOG allows en
through to the current epoch. Fo

ergent volume e

olution correctly at first order
with a resolution of N = 128%

initial condi
an initial nos

https://arxiv.org/abs/2112.14174

Analysis step results/values stored in a single build directory.
All BTEX macros are output in a single directory.

File Edit Options Buffers Tools TeX Text Help
s H x Q
\newcommand{\timestepvalue}{1000}
\newcommand{\ramseslevelmaxname}{{\tt ramses_levelmax}}
\newcommand{\ramseslevelmaxvalue}{10}
\newcomman@{\NcrootInhomogHTWEightvaIue}{128}
\newcommand{\NcrootGevolutionHTwEightvalue}{128}

inewcommand{\lnhomogAccu racyPercentLCDMmzdzzouSixtFourvalue}{-0.00
3:::wcom mand{\InhomogAccuracyPercentEdSzdzzouHTwEightvalue}{-0.0058}
\ewcommand{\lnhomogAccu racyPercentEdSmzdzzouHTwEightvalue}{-0.005
!\)ewcom mand{\InhomogAccuracyPercentLCDMzdzzouHTwEightvalue}{-0.003
3r}1ewcommand{\lnhomogAccu racyPercentLCDMmzdzzouHTwEightvalue}{-0.0
<034}

-%%- analyse-plot.tex 2% L11 [(LaTeX)] 22:00 0.64 Mail)

Analysis step results/values stored in a single build directory.
All KTEX macros are output in a single directory.

File Edit Options Buffers Tools TeX Text Help
9 B X L Q
\newcommand{\timestepvalue}{1000}
\newcommand{\ramseslevelmaxname}{{\tt ramses_levelmax}}
\newcommand{\ramseslevelmaxvalue}{10}
\newcomman@{\NcrootInhomogHTWEightvaIue}{128}

\newcommand{\NcrootGevolutionHTwEightvalue}{128}

inewcommand{\lnhomogAccu racyPercentLCDMmzdzzouSixtFourvalue}{-0.00
3:::wcom mand{\InhomogAccuracyPercentEdSzdzzouHTwEightvalue}{-0.0058}
\newcommand{\InhomogAccuracyPercentEdSmzdzzouHTwEightvalue}{-0.005
i!\)r}\ewcom mand{\InhomogAccuracyPercentLCD MzdzzouHTwEightvaIue}I—0.003
3rll}ewcommand{\lnhomogAccu racyPercentLCDMmzdzzouHTwEightvalue}{-0.0
<034}

-%%- analyse-plot.tex 2% L12 [(LaTeX)] 21:59 0.63 Mail -

Analysis results stored as IATEX macros

The analysis scripts write/update the IKTEX macro values automatically.

Numbers for dettf.tex:
s50qnt=9999999

function dettfhist

{

Set the file name.

if [$2 == 4 1; then obase=four

elif [$2 = sensitivity3]; then obase=sensitivityc;
else obase=$2;

fi

if [$2 == onelarge 1; then ind="_7"; else ind="_12"; fi
name=$1$2$ind"_detsn"$txt

dettfnum=$(awk '/points binned in/{print $4; exit(0)}' $name)
dettfgnt=$(awk '/quantile has a value of/{
printf("%.2f", $9); exit(0);}' $name)

dettfmax=$(awk 'BEGIN { max=-999999 }

v/~ { if($2>max) {max=$2; mv=$1} }

END { printf("%.2f", mv) }' $name)
addtexmacro $obase"dettfnum" $dettfnum
addtexmacro $obase"dettfmax" $dettfmax
addtexmacro $obase"dettfgnt" $dettfgnt

Find the smallest S/N quantile:
sqnt=$(echo " " | awk '{if('$dettfqnt'<'$sqnt') print '$dettfgnt'}"')
}
for base in 4 onelarge sensitivity3
do dettfhist $texdir/dettf/ $base; done
addtexmacro dettfsmallestsngnt $sqnt

Analysis results stored as IATEX macros

The analysis scripts write/update the IKTEX macro values automatically.

Numbers for dettf.tex:
s50qnt=9999999

function dettfhist

{

Set the file name.

if [$2 == 4 1; then obase=four

elif [$2 = sensitivity3]; then obase=sensitivityc;
else obase=$2;

fi

if [$2 == onelarge 1; then ind="_7"; else ind="_12"; fi
name=$1$2$ind"_detsn"$txt

dettfnum=$(awk '/points binned in/{print $4; exit(0)}' $name)
dettfgnt=$(awk '/quantile has a value of/{
printf("%.2f", $9); exit(0);}' $name)

dettfmax=$(awk 'BEGIN { max=-999999 }

v/~ { if($2>max) {max=$2; mv=$1} }

END { printf("%.2f", mv) }' $name)
addtexmacro $obase"dettfnum" $dettfnum
addtexmacro $obase"dettfmax" $dettfmax
addtexmacro $obase"dettfgnt" $dettfgnt

Find the smallest S/N quantile:
sqnt=$(echo " " | awk '{if('$dettfqnt'<'$sqnt') print '$dettfgnt'}"')
}
for base in 4 onelarge sensitivity3
do dettfhist $texdir/dettf/ $base; done
addtexmacro dettfsmallestsngnt $sqnt

Makefiles (.mk) keep contextually separate parts of the project, all imported into top-make .mk

top-make . mk
initialize.mk download.mk format.mk demo-plot.mk

verify.mk paper .mk

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),
built files are shown in the Makefile that contains their build instructions.

The ultimate purpose of the project is to produce a paper/report (in PDF).

top-make . mk

initialize.mk

download.mk

format.mk

demo-plot.mk

verify.mk

paper .mk

paper . pdf

Green boxes with sharp corners: source files (hand written).

Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

initialize.mk

The narrative description, typography and references are in paper.tex & references.tex.
download.mk

top-make . mk

format.mk

demo-plot.mk

verify.mk

paper .mk
Green boxes with sharp corners: source files (hand written).

Blue boxes with rounded corners: built files (automatically generated),

E
P e—— |
1

| references. tex

I paper . tex I

built files are shown in the Makefile that contains their build instructions.

=

Analysis outputs (blended into the PDF as IATEX macros) come from project.tex.

top-make . mk
initialize.mk download.mk format.mk demo-plot.mk
verify.mk paper .mk
*
—
. . . { 1
Green boxes with sharp corners: source files (hand written).
. e . references. tex
Blue boxes with rounded corners: built files (automatically generated),
built files are shown in the Makefile that contains their build instructions.

| paper . tex |

=

initialize.mk

top-make . mk
download.mk

But analysis outputs must first be verified (with checksums) before entering the report/paper.

format.mk

demo-plot.mk

verify.mk
verify.tex

paper .mk
3(project.tex paper . pdf
*
———
. . . { 1
Green boxes with sharp corners: source files (hand written). |
. e . references. tex
Blue boxes with rounded corners: built files (automatically generated),
built files are shown in the Makefile that contains their build instructions.

| paper . tex |

=

Basic project info comes from initialize.tex.

top-make . mk
initialize.mk download.mk format.mk demo-plot.mk

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

initialize.tex

J

J verify.mk paper .mk

(verify.tex })@—) paper . pdf
*

—
1 1

| paper . tex |

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),
built files are shown in the Makefile that contains their build instructions.

| references. tex

[m] = =

The paper includes some information about the plot.

top-make . mk
initialize.mk download.mk format.mk demo-plot.mk

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

initialize.tex demo-plot. tex

J

J
J verify.mk paper .mk
(verify.tex })@—) paper . pdf
+
—

1 1
| paper . tex |

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),
built files are shown in the Makefile that contains their build instructions.

| references. tex

[m] = =

The final plotted data are calculated and stored in tools-per-year.txt.

top-make . mk
initialize.mk download.mk format.mk demo-plot.mk

Basic project info
(e.g., Git commit).

Also defines
project structure

(for *.mk files). tools-per-
year.txt

demo-plot. tex

initialize.tex

J

J
J verify.mk paper .mk
(verify.tex })@—) paper . pdf
+
—

1 1
| paper . tex |

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),
built files are shown in the Makefile that contains their build instructions.

| references. tex

[m] = =

The plot’s calculation is done on a formatted sub-set of the raw input data.

top-make . mk
initialize.mk download.mk format.mk demo-plot.mk

Basic project info
(e.g., Git commit).

Also defines table-3.txt

project structure
(for *.mk files). tools-per-

year.txt
1 initialize.tex) demo-plot. tex
J)
Jd verify.mk paper.mk
(verify.tex })@—) paper . pdf
+
—

1 1
| paper . tex |

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),
built files are shown in the Makefile that contains their build instructions.

| references. tex

[m] = =

The raw data that were downloaded are stored in XLSX format.

top-make . mk
initialize.mk download.mk format.mk demo-plot.mk
Basic project info
(e.g., Git commit). menke20. x1sx
Also defines table-3. txt
project structure
(for *.mk files). tools-per-
year.txt
1 initialize.tex) demo-plot. tex
J)
Jd verify.mk paper.mk
(verify.tex })@—) paper . pdf
+
—

1 1
| paper . tex |

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),
built files are shown in the Makefile that contains their build instructions.

| references. tex

[m] = =

The download URL and a checksum to validate the raw inputs, are stored in INPUTS. conf.

INPUTS. conf

top-make . mk
initialize.mk download.mk format.mk demo-plot.mk
Basic project info
(e.g., Git commit). menke20. x1sx
Also defines table-3. txt
project structure
(for *.mk files). tools-per-
year.txt
1 initialize.tex) demo-plot. tex
J)
Jd verify.mk paper.mk
(verify.tex })@—) paper . pdf
+
—

1 1
| paper . tex |

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),
built files are shown in the Makefile that contains their build instructions.

| references. tex

[m] = =

We also need to report the URL in the paper...

INPUTS. conf
top-make . mk
initialize.mk download.mk format.mk demo-plot.mk
Basic project info
(e.g., Git commit). |\y(menke20.x1sx
Also defines table-3. txt
project structure
(for *.mk files). tools-per-
year.txt
Gnitialize.tea ‘}(download‘tex) demo-plot. tex
|
2z J)
J verify.mk paper .mk
3(project.tex paper . pdf
————
. . . 1 1
Green boxes with sharp corners: source files (hand written). | .,
Blue boxes with rounded corners: built files (automatically generated), :
built files are shown in the Makefile that contains their build instructions.

I paper . tex I

=

Some general info about the full dataset may also be reported.

INPUTS. conf
top-make . mk

initialize.mk download.mk format.mk demo-plot.mk

Basic project info

(e.g., Git commit). |\y(menke20.x1sx
Also defines (table-3.txt)

project structure
(for *.mk files).

tools-per-
year.txt

2
Gnitialize.tea ‘}(download‘tex) (format.tex) (demo-plot.tex)
T T T
2 J J)
J verify.mk paper .mk
verify)@—) paper . pdf
—

1 1
I paper . tex I

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),
built files are shown in the Makefile that contains their build instructions.

| references. tex

[m] = =

We report the number of papers studied in a special year, desired year is stored in .conf file.

top-make . mk
initialize.mk download.mk format.mk demo-plot.mk

Basic project info

(e.g., Git commit). |\y(menke20.x1sx
Also defines (table-3.txt)

project structure
(for *.mk files).

tools-per-
year.txt

2
Gnitialize.tea ‘}(download‘tex) (format.tex) »(demo-plot.tex)
| 1 |
2 J J)

J verify.mk paper .mk
verify)@—) paper . pdf
—

1 1
I paper . tex I

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),
built files are shown in the Makefile that contains their build instructions.

| references. tex

[m] = =

It is very easy to expand the project and add new analysis steps (this solution is scalable)

----------- 1
INPUTS. conf .= param.conf
IR 4

top-make.mk -
initialize.mk download.mk format.mk demo-plot.mk :: next-step.mk |
[, L
| |
4mmmmmt bt e e .- He e e e e emea by out-a.dat ‘,-‘\

kS

Basic project info S

i
- . |l

. . .
(e.g., Git commit). [N menke20.xlsx Jrl====m=m=m=m====).\ demo-out.dat | | |
S

D TR

[| il ~
Also defines (table-3.txt) Smmme. % out-b.dat
project structure — A ek Rl
(for *.mk files).

S

tools-per-
year.txt

2 PR R
’
Gnitialize.tea ‘}(download‘tex) (format.tex) »(demo-plot.tex) 4 next-step. tex
T T T S
2) D
J verify.mk paper .mk
verify)@—) paper . pdf

—
1 1

I paper . tex I

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),
built files are shown in the Makefile that contains their build instructions.

| references. tex

[m] = =

The whole project is a directed graph (codifying the data’s lineage).

» Every file (source or built) is a node in the graph (connected to others).
(The links/connections/dependencies between the nodes, defined by the Makefiles: *.mk)

» There are two types of nodes/files:
» Source nodes (*.conf and paper.tex) only have an outward link.

» Built files always have inward and (except paper.pdf) outward link(s).

» All built files ultimately originate from a *.conf file,
. and ultimately conclude in paper.pdf.

Benefits of using Make

> Make can parallelize the analysis:
Make knows which steps are indepenent and will run them at the same time.

» Make can automatically detect a change and will re-do only the affected steps.
(for example to change the multiple of sigma in a configuration file to see its effect)

» Easily backtrace any step (without needing to remember!).
(very useful to find problems/improvements)

» The above will speed up your work, and encourage experimentation on methods.
> Make is available on any system: many people are already familiar with it.

» And again: its all in plain text!
(doesn’t take much space, easy to read, distribute, parse automatically, or archive)

» Recall that the project’s software installation was also managed in Make.

Files organized in directories by context (here are some of the files discussed before)

project/
reproduce/ tex/
software/ analysis/ src/
config/ make/ config/ make/
| INPUTS.cont | | | | top-prepare.mk |
versions.conf | | high-level.mk | | param-1.conf | | top-make.mk |
| param-2a.conf | | | | initialize.mk |
| param-2b. conf | | analysisl.mk |
shell/ bibtex/
bash/ python/

Files organized in directories by context (now with other project files and symbolic links)

project/
[copvine | | paper.tex | | project | | README.md | | README-hacking.nd |
reproduce/ tex/
software/ analysis/ src/
config/ make/ config/ make/
| LOCAL.conf.in | ||| basic.mk | INPUTS. conf | top-prepare.mk |

| versions.conf | |

high-level.mk |

| top-make.mk |

I
| param-1.conf
I
I

| checksums . conf | | python.mk | param-2a.conf | initialize.mk | 1 build/ :
. 1
param-2b. conf | analysisl.mk | :Symbolic link to 1
shell/ bibtex/ | ot iy |

| configure.sh | | fftv.tex | bash/ python/ | ||| o _____
| bashrc.sh | | numpy . tex | | process-A.sh | | operation-B.py | i tikz/ :

fitting-plot.py

\Symbolic link to TikZ'|
'directory (figures built:

\by IBTEX).

! .local/

1 Symbolic link to project’s software environment, e.g.,
: Python or R, run ‘.1 1

i Full project temporal provenance (version controlled history) in Git.

! .build/

1
1 1
' Symbolic link to project’s top-level build directory. :
: Enabling easy access to all of project’s built components 1

1

.git/ 1

All questions have an answer now (in plain text: human & computer readable/archivable).

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

All questions have an answer now (|n plain text: so we can use Git to keep its history)

-
-
Green boxes with sharp corners: source/input components/files
Blue boxes with rounded corners: built components

Red boxes with dashed borders: questions that must be clarified for each phase

DA

New projects branch from Maneage
» The project (answers to questions above) will evolve.

Today

New projects branch from Maneage
» The project (answers to questions above) will evolve.

Tomorrow

Today

New projects branch from Maneage
» Each point of project’s history is recorded with Git.

706c644

ad2c476

Maneage

New projects branch from Maneage
» Each point of project’s history is recorded with Git.

» New project: a branch from the template.
Every commit contains the following:

» Instructions to download, verify and build software.
> Instructions to download and verify input data.

> Instructions to run software on data (do the analysis).
> Narrative description of project’s purpose/context.

53b53d6

706c644 PrOjeCt

ad2c476

Maneage

New projects branch from Maneage
» Each point of project’s history is recorded with Git.

» New project: a branch from the template.
Every commit contains the following:

» Instructions to download, verify and build software.
> Instructions to download and verify input data.

> Instructions to run software on data (do the analysis).
> Narrative description of project’s purpose/context.

P Research progresses in the project branch.

8ebb784
9f8cc74

53b53d6

706c644 PrOjeCt

ad2c476

Maneage

New projects branch from Maneage

Maneage

» Each point of project’s history is recorded with Git.

» New project: a branch from the template.
Every commit contains the following:
» Instructions to download, verify and build software.
> Instructions to download and verify input data.
> Instructions to run software on data (do the analysis).
> Narrative description of project’s purpose/context.

P Research progresses in the project branch.

» Template will evolve (improved infrastructure).

New projects branch from Maneage

v

Each point of project’s history is recorded with Git.

v

New project: a branch from the template.

Every commit contains the following:
» Instructions to download, verify and build software.
> Instructions to download and verify input data.
> Instructions to run software on data (do the analysis).
> Narrative description of project’s purpose/context.

v

Research progresses in the project branch.

v

Template will evolve (improved infrastructure).

v

Template can be imported/merged back into project.

Maneage

New projects branch from Maneage

Maneage

» Each point of project’s history is recorded with Git.

» New project: a branch from the template.

vV v.v. v Yy

Every commit contains the following:

» Instructions to download, verify and build software.
> Instructions to download and verify input data.

> Instructions to run software on data (do the analysis).
> Narrative description of project’s purpose/context.

Research progresses in the project branch.

Template will evolve (improved infrastructure).
Template can be imported/merged back into project.
The template and project will evolve.

During research this encourages creative tests
(previous research states can easily be retrieved).

Coauthors can work on same project in parallel
(separate project branches).

New projects branch from Maneage

Maneage

v e

52

» Each point of project’s history is recorded with Git.

» New project: a branch from the template.

vV v.v. v Yy

Every commit contains the following:

» Instructions to download, verify and build software.
> Instructions to download and verify input data.

> Instructions to run software on data (do the analysis).
> Narrative description of project’s purpose/context.

Research progresses in the project branch.

Template will evolve (improved infrastructure).
Template can be imported/merged back into project.
The template and project will evolve.

During research this encourages creative tests
(previous research states can easily be retrieved).

Coauthors can work on same project in parallel
(separate project branches).

Upon publication, the Git commit ID identifies the
peer-reviewed version of record (apart from journal
typesetting, proofreading corrections).

Any Git-based workflow is possible.

Project

(a) pre-publication: (b) post-publication:
Collaborating on a project while Other researchers building upon
= working in parallel, then merging. = previously published work.

Man-eage Man-eage

Publication of the project
A reproducible project using Maneage will have the following (plain text) components:
» Makefiles.
» IATEX source files.
» Configuration files for software used in analysis.
» Scripts/programming files (e.g., Python, Shell, AWK, C).

The volume of the project’s source will thus be tiny: <1 Mb.
Borkowska & Roukema (2022) 550 kb + Peper, Roukema & Bolejko (2023) 740 kb would fit on a
floppy disk

The project’s pipeline (customized Maneage) can be published in

» arXiv: uploaded with the IATEX source to always stay with the paper
(for example arXiv:2112.14174).
» Zenodo: Along with all the input datasets (many gigabytes) and software
(for example zenodo.6794222) and given a unique DOI.
» .. and put links to data in paper! See the caption of Fig. 3 in Borkowska & Roukema (2022).
> Software Heritage: to archive the full version-controlled history of the project.
(for example svvh:1:dir:33fea87068c1612daf011f161b97787b9a0df39fk)
» ... and put links to exact parts of the code! See caption of Listing 1 in the Maneage paper.

https://zenodo.org/records/6794222/files/gevcurvtest-cc5ca58-snapshot.tar.gz
https://zenodo.org/records/8103985/files/lensing-ddbb4ac-snapshot.tar.gz
https://arxiv.org/abs/2112.14174
https://doi.org/10.5281/zenodo.6794222
https://doi.org/10.1088/1361-6382/ac8ddb
https://archive.softwareheritage.org/swh:1:dir:33fea87068c1612daf011f161b97787b9a0df39f;origin=http://git.maneage.org/paper-concept.git/;visit=swh:1:snp:89af43c4b076a17d9298299f224247038af355ea;anchor=swh:1:rev:313db0b04bd3499f83d9e79fd7e92578cd367c2b
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9403875

Project source and its execution

Programs [here: Scientific projects| must be written for people to read...
...and only incidentally for machines to execute.

Harold Abelson, Structure and Interpretation of Computer Programs

General outline of using this system (e.g. arXiv:2112.14174)

$ git clone https://codeberg.org/boud/gevcurvtest # Import the project.
$ cd gevcurvtest # Enter the directory.
$./project --help # RTFM. Skip if brave enough.

$./project configure # You will specify the build directory on your system,
and it will build all software (~2-3 hours on 4 cores).

$./project make # Does all the analysis and makes final PDF.

https://arxiv.org/abs/2112.14174

Practical experience: peer-reviewed cosmology papers

>

v

Peper & Roukema (2021), MNRAS, 505, 1223, “The role of the elaphrocentre in void galaxy
formation”

» https://arXiv.org/abs/2010.03742

» frozen record: https://zenodo.org/record/4699702

> live git: https://codeberg.org/boud/elaphrocentre

» archived git: swh:1:rev:a029edd32d5cd41dbdac145189d9b1a08421114e
Borkowska & Roukema (2022) CQG, 39, 215007 “Does relativistic cosmology software handle
emergent volume evolution?”

> https://arXiv.org/abs/2112.14174

» frozen record: https://zenodo.org/record/5806027

> live git: https://codeberg.org/boud/gevcurvtest

» archived git swh:1:rev:d9b47736f81affObb8f2f359d9f033122a923f38d
Peper, Roukema & Bolejko (2023) MNRAS, 525, 91 “Detecting cosmic voids via maps of
geometric-optics parameters”

> https://arXiv.org/abs/2304.00591

» frozen record: https://zenodo.org/record/8103985

> live git: https://codeberg.org/mpeper/lensing

» archived git swh:1:rev:b5dff23ab8ba8c758112d5fd3f737fb6f44cdbfe

Was it a lot of work? Yes.
Did we feed our variations and fixes upstream to Maneage? Many, yes.

Overall feeling: was it worth it? Yes.

https://oadoi.org/10.1093/mnras/stab1342
https://arXiv.org/abs/2010.03742
https://zenodo.org/record/4699702
https://codeberg.org/boud/elaphrocentre
https://archive.softwareheritage.org/swh:1:rev:a029edd32d5cd41dbdac145189d9b1a08421114e
https://oadoi.org/10.1088/1361-6382/ac8ddb
https://arXiv.org/abs/2112.14174
https://zenodo.org/record/5806027
https://codeberg.org/boud/gevcurvtest
https://archive.softwareheritage.org/browse/revision/d9b47736f81aff9bb8f2f359d9f0331aa923f38d
https://oadoi.org/10.1093/mnras/stad2246
https://arXiv.org/abs/2304.00591
https://zenodo.org/record/8103985
https://codeberg.org/mpeper/lensing
https://archive.softwareheritage.org/browse/revision/b5dff23ab8ba8c758112d5fd3f737fb6f44cd6fe

How can you try this out?

> Try to reproduce Borkowska & Roukema (2022), e.g. from SWH:
swh:1:rev:d9b47736f81aff9bb8f2f359d9f033122923f38d (0.5 Mb; fits on a floppy disk)

» Did it fully configure, run and verify? If not, then post an issue at
https://codeberg.org/boud/gevcurvtest or, if relevant, post it upstream as a task or a bug:

» Tasks: https://savannah.nongnu.org/tasks/?group=reproduce, e.g.
#15739 debian-verified sources (stable || testing)

#15363 file dates after git checkout

#15997 safe-rm

#15390 glibc within Maneage

vvyyvyy

> Bugs: https://savannah.nongnu.org/bugs/?group=reproduce, e.g.
> #62879 Maneage handling of /dev/shm and required RAM

» Core Maneage: https://git.maneage.org/project.git
» Merge requests: any git server of your choice

» Description of implementation, how-to guide, recommendations:
https://codeberg.org/boud/maneage_dev/src/branch/maneage/README-hacking.md

> Interactive discussion: #maneage_community:matrix.org (e.g.
https://matrix.to/#/#maneage_community:matrix.org)

https://archive.softwareheritage.org/browse/revision/d9b47736f81aff9bb8f2f359d9f0331aa923f38d
https://codeberg.org/boud/gevcurvtest
https://savannah.nongnu.org/tasks/?group=reproduce
https://savannah.nongnu.org/task/?15739
https://savannah.nongnu.org/task/?15739
https://savannah.nongnu.org/task/?15997
https://savannah.nongnu.org/task/?15390
https://savannah.nongnu.org/bugs/?group=reproduce
https://savannah.nongnu.org/bugs/?62879
https://git.maneage.org/project.git
https://codeberg.org/boud/maneage_dev/src/branch/maneage/README-hacking.md
https://matrix.to/#/#maneage_community:matrix.org

Conclusion

Maneage (Akhlaghi+2021, CiSE 23, 82 arXiv:2006.03018) is a customisable template that does the
following — all in plain text files:

» Automatically downloads the necessary software and data.
Builds the software in a closed environment.

Runs the software on data to generate the final research results.
Only those components that need to be re-done are re-done.

Using IXTEX macros, the paper's figures, tables and numbers will be automatically updated.

vvYyyvyy

The whole project is under version control (Git) encouraging tests and experimentation.
» The Git commit hash of the project source is printed in the paper and on output data products.

Published cosmology papers:

» Peper & Roukema (2021) MNRAS, 505, 1223, “The role of the elaphrocentre in void galaxy
formation”, https://doi.org/10.5281/zenodo.4699702

> Borkowska & Roukema (2022) CQG, 39, 215007 “Does relativistic cosmology software handle
emergent volume evolution?”, https://doi.org/10.5281/zenodo.5806027

» Peper, Roukema & Bolejko (2023) MNRAS, 525, 91 “Detecting cosmic voids via maps of
geometric-optics parameters”, https://doi.org/10.5281/zenodo.8103985

this pdf — full of clickable links: https://cosmo.torun.pl/~boud/Roukema20240311IANCU.pdf

https://doi.org/10.1109/MCSE.2021.3072860
https://arxiv.org/abs/2006.03018
https://oadoi.org/10.1093/mnras/stab1342
https://doi.org/10.5281/zenodo.4699702
https://oadoi.org/10.1088/1361-6382/ac8ddb
https://doi.org/10.5281/zenodo.5806027
https://oadoi.org/10.1093/mnras/stad2246
https://doi.org/10.5281/zenodo.8103985
https://cosmo.torun.pl/~boud/Roukema20240311IANCU.pdf

