# Local few-hundred-megaparsec Hubble–Lemaître analysis with minimal model dependence

Boud Roukema
Institute of Astronomy NCU



17 Sep 2025 Rubin–LSST@Europe7 @Poznań

### Overview

- context: FLRW interpretation of data is over restrictive
- aim: infer cosmological line element @few 100
   Mpc with many fewer assumptions
- method:
- theory: "quiet universe" assumption Heinesen
   Macpherson 2022 <u>ArXiv:2111.14423</u>
- data: Rubin–LSST + spectro followup 4MOST + DESI

### Assumptions – details

- Lorentzian spacetime
- $\forall x$  tangent @x = Minkowski spacetime
- geometrical optics
- Etherington's reciprocity theorem - $d_{
  m L} = (1+z)^2 d_{
  m A}$
- congruence of light paths from emitters to observer
- negligible caustics
- ightharpoonup convergence of  $d_{
  m L}$  in z
- $\Rightarrow$  roughly speaking, not too far from FLRW for  $z\ll 1$

### Cosmographic parameters

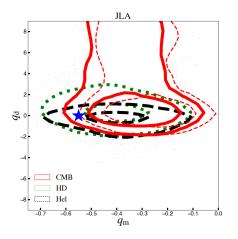
• observational aim: determine  $\mathfrak{H}_o, \mathfrak{Q}_o, \mathfrak{R}_o, \mathfrak{J}_o$  from SNe Ia

$$d_L = d_L^{(1)} z + d_L^{(2)} z^2 + d_L^{(3)} z^3 + \mathcal{O}(z^4)$$

where 
$$d_L^{(1)}=f(\mathfrak{H}_{
m o}),$$
  $d_L^{(2)}=f(\mathfrak{H}_{
m o},\mathfrak{Q}_{
m o}),$   $d_L^{(3)}=f(\mathfrak{H}_{
m o},\mathfrak{Q}_{
m o},\mathfrak{R}_{
m o},\mathfrak{F}_{
m o})$ 

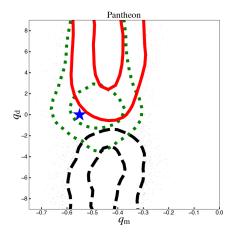
variation over sky – dipoles, quadrupoles




## Cosmographic predictions (HM2022)

- $ightharpoonup \mathfrak{H}_{\mathrm{o}}$  dipole =0
- $\mathfrak{Q}_{\rm o}$  dipole:  $\mathfrak{q}_{\mu} \propto D_{\mu} \theta \propto D_{\mu} \rho$  aligned with matter spatial-gradient
  - $(\mathfrak{R}_{o}$  fully dependent on  $\mathfrak{H}_{o}, \mathfrak{Q}_{o}, \mathfrak{J}_{o})$
- $\mathfrak{J}_{
  m o}$  dipole:  $\overset{1}{\mathfrak{j}_{\mu}} \propto D_{\mu} heta \propto D_{\mu} 
  ho$  aligned with  $\mathfrak{Q}_{
  m o}$  dipole and matter spatial-gradient

## Analysis aim


- find best fit monopoles, dipoles and quadrupoles of  $\mathfrak{H}_o, \mathfrak{Q}_o, \mathfrak{R}_o, \mathfrak{J}_o$  in  $d_L(z)$  relation
- ► cf Dhawan+2022
  - ► Pantheon + JLA
  - ▶ no significant dipole, quadrupole detected in  $\mathfrak{H}_o$ ,  $\mathfrak{Q}_o$  in CMB frame after accounting for peculiar velocities

#### Dhawan+2022: deceleration moments



 $\begin{array}{c} \underline{\text{Dhawan} + 2022} - \text{JLA} \\ \mathfrak{Q}_{\text{o}} \text{ dipole } q_{\text{d}} \text{ vs monopole } q_{\text{m}} \\ \textbf{Heliocen} \quad \textbf{CMB} \quad \textbf{HD} = \textbf{pec vel corr.} \end{array}$ 

#### Dhawan+2022: deceleration moments



 $\frac{\text{Dhawan} + 2022}{\mathfrak{Q}_{\text{o}} \text{ dipole } q_{\text{d}} \text{ vs monopole } q_{\text{m}}} + \text{Poliocen} \quad \text{CMB} \quad \text{HD} = \text{pec vel corr.}$ 

#### Caveats

- how much will non-uniform, non- $4\pi$  sky coverage bias the results?
- ▶ can the full selection functions (sky  $\rightarrow$  Rubin  $\rightarrow$  redshifts) be modelled accurately?

### Conclusion

- beyond-FLRW modelling "cosmography" has recently made significant progress – HM2022
- Rubin + 4MOST + DESI SNe Ia data will be ideal for the few-hundred Mpc scale
- ▶ aim: upper bounds or detections of the monopoles, dipoles and quadrupoles of  $\mathfrak{H}_o, \mathfrak{Q}_o, \mathfrak{R}_o, \mathfrak{J}_o$
- ▶ HM2022 prediction: detection of  $\mathfrak{Q}_o, \mathfrak{R}_o, \mathfrak{J}_o$  dipoles aligned with matter spatial-gradient